ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Automated Congestion Management in the AI Data Center with Juniper Networks

Автор: Tech Field Day

Загружено: 2024-06-14

Просмотров: 1923

Описание: To maximize throughput and minimize packet loss, Ethernet uses the DCQCN congestion management protocol, but DCQCN introduces significant operational complexity for human operators. Learn how Juniper Apstra handles this new challenge in stride, automatically optimizing throughput and the “right amount” of packet loss.

Juniper Networks' presentation at Cloud Field Day 20, led by Rajagopalan Subrahmanian and Vikram Singh, focused on automated congestion management in AI/ML data center fabrics. They began by explaining the challenges faced by network administrators in managing congestion, drawing an analogy to metering lights on freeways that regulate traffic flow. In AI/ML environments, the complexity increases due to the large number of entities that need monitoring and the manual, error-prone process of tuning congestion parameters. Juniper's solution integrates with their Apstra platform to automate this process, leveraging continuous monitoring and closed-loop automation to optimize network performance dynamically.

The core of Juniper's approach involves a DCQCN AutoTune application that utilizes Apstra's capabilities to monitor key performance indicators and adjust network configurations in real-time. By simulating high-traffic scenarios in their lab, they demonstrated how the system detects congestion and uses Terraform to tweak configurations across the network fabric. This automated process helps maintain optimal throughput and the right amount of packet loss, adjusting parameters based on real-time data rather than static, manual settings. The system can apply changes selectively to affected switches or more broadly across similar network segments to preempt potential issues.

Juniper's method combines two Ethernet congestion control mechanisms: Priority Flow Control (PFC) and Explicit Congestion Notification (ECN). PFC acts as a brute-force method to stop traffic when buffers are nearly full, while ECN offers a more granular approach by marking packets to signal congestion and prompt sender devices to reduce their transmission rates. The DCQCN protocol judiciously uses both techniques to manage congestion effectively. Juniper's automation adjusts these settings dynamically, ensuring that the network remains stable and efficient under varying loads. The presentation highlighted the flexibility and potential for further customization, including integration with application-level metrics and additional congestion indicators from SmartNICs.

Recorded live in Sunnyvale, California on June 12, 2024 as part of Cloud Field Day 20. Watch the entire presentation at https://techfieldday.com/appearance/j... or visit https://TechFieldDay.com/event/cfd20/ or https://www.juniper.net for more information.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Automated Congestion Management in the AI Data Center with Juniper Networks

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

AI Network Challenges & Solutions with Arista

AI Network Challenges & Solutions with Arista

Экскурсия по «Центру интернета» и искусственного интеллекта.

Экскурсия по «Центру интернета» и искусственного интеллекта.

Обзор Juniper Apstra с новой функцией Apstra Freeform Flexibility

Обзор Juniper Apstra с новой функцией Apstra Freeform Flexibility

AI Unbound, Your Data Center Your Way with Juniper Networks

AI Unbound, Your Data Center Your Way with Juniper Networks

QuantaMesh TA064-IXM: 800G Ethernet Switch in AI Data Center

QuantaMesh TA064-IXM: 800G Ethernet Switch in AI Data Center

Broadcom Jericho3 AI Ethernet Fabric

Broadcom Jericho3 AI Ethernet Fabric

Netdev 0x19 - Congestion-control in AI/ML networks at datacenter scale

Netdev 0x19 - Congestion-control in AI/ML networks at datacenter scale

Reducing Job Completion Time in AI/ML Clusters with Broadcom DNX

Reducing Job Completion Time in AI/ML Clusters with Broadcom DNX

Maximize AI Cluster Performance using Juniper Self-Optimizing Ethernet with Juniper Networks

Maximize AI Cluster Performance using Juniper Self-Optimizing Ethernet with Juniper Networks

AI/ML Data Center Design - Part 1

AI/ML Data Center Design - Part 1

$12 Миллиардов, Но Бесплатно Для Всех. Что Скрывает GPS?

$12 Миллиардов, Но Бесплатно Для Всех. Что Скрывает GPS?

Тимошенко взяли

Тимошенко взяли

Путь инженера ИИ/МО — суровая правда

Путь инженера ИИ/МО — суровая правда

От сетевых мифов к решениям — подход Juniper к центрам обработки данных на базе ИИ

От сетевых мифов к решениям — подход Juniper к центрам обработки данных на базе ИИ

The case for Standardization of RoCE Congestion Control

The case for Standardization of RoCE Congestion Control

БЕЛЫЕ СПИСКИ: какой VPN-протокол справится? Сравниваю все

БЕЛЫЕ СПИСКИ: какой VPN-протокол справится? Сравниваю все

Самая сложная модель из тех, что мы реально понимаем

Самая сложная модель из тех, что мы реально понимаем

Private Data Center as Easy as Cloud with Juniper Apstra

Private Data Center as Easy as Cloud with Juniper Apstra

КАК УСТРОЕН TCP/IP?

КАК УСТРОЕН TCP/IP?

Что такое Rest API (http)? Soap? GraphQL? Websockets? RPC (gRPC, tRPC). Клиент - сервер. Вся теория

Что такое Rest API (http)? Soap? GraphQL? Websockets? RPC (gRPC, tRPC). Клиент - сервер. Вся теория

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]