ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

#61: Prof. YANN LECUN: Interpolation, Extrapolation and Linearisation (w/ Dr. Randall Balestriero)

Автор: Machine Learning Street Talk

Загружено: 2022-01-04

Просмотров: 169891

Описание: We are now sponsored by Weights and Biases! Please visit our sponsor link: http://wandb.me/MLST

Patreon:   / mlst  
Discord:   / discord  

Yann LeCun thinks that it's specious to say neural network models are interpolating because in high dimensions, everything is extrapolation. Recently Dr. Randall Bellestrerio, Dr. Jerome Pesente and prof. Yann LeCun released their paper learning in high dimensions always amounts to extrapolation. This discussion has completely changed how we think about neural networks and their behaviour.

[00:00:00] Pre-intro
[00:11:58] Intro Part 1: On linearisation in NNs
[00:28:17] Intro Part 2: On interpolation in NNs
[00:47:45] Intro Part 3: On the curse
[00:57:41] LeCun intro
[00:58:18] Why is it important to distinguish between interpolation and extrapolation?
[01:03:18] Can DL models reason?
[01:06:23] The ability to change your mind
[01:07:59] Interpolation - LeCun steelman argument against NNs
[01:14:11] Should extrapolation be over all dimensions
[01:18:54] On the morphing of MNIST digits, is that interpolation?
[01:20:11] Self-supervised learning
[01:26:06] View on data augmentation
[01:27:42] TangentProp paper with Patrice Simard
[01:29:19] LeCun has no doubt that NNs will be able to perform discrete reasoning
[01:38:44] Discrete vs continous problems?
[01:50:13] Randall introduction
[01:50:13] are the interpolation people barking up the wrong tree?
[01:53:48] Could you steel man the interpolation argument?
[01:56:40] The definition of interpolation
[01:58:33] What if extrapolation was being outside the sample range on every dimension?
[02:01:18] On spurious dimensions and correlations dont an extrapolation make
[02:04:13] Making clock faces interpolative and why DL works at all?
[02:06:59] We discount all the human engineering which has gone into machine learning
[02:08:01] Given the curse, NNs still seem to work remarkably well
[02:10:09] Interpolation doesn't have to be linear though
[02:12:21] Does this invalidate the manifold hypothesis?
[02:14:41] Are NNs basically compositions of piecewise linear functions?
[02:17:54] How does the predictive architecture affect the structure of the latent?
[02:23:54] Spline theory of deep learning, and the view of NNs as piecewise linear decompositions
[02:29:30] Neural Decision Trees
[02:30:59] Continous vs discrete (Keith's favourite question!)
[02:36:20] MNIST is in some sense, a harder problem than Imagenet!
[02:45:26] Randall debrief
[02:49:18] LeCun debrief

Pod version: https://anchor.fm/machinelearningstre...

Our special thanks to;
Francois Chollet (buy his book! https://www.manning.com/books/deep-le...)
Alexander Mattick (Zickzack)
Rob Lange
Stella Biderman

References:
Learning in High Dimension Always Amounts to Extrapolation [Randall Balestriero, Jerome Pesenti, Yann LeCun]
https://arxiv.org/abs/2110.09485

A Spline Theory of Deep Learning [Dr. Balestriero, baraniuk]
https://proceedings.mlr.press/v80/bal...

Neural Decision Trees [Dr. Balestriero]
https://arxiv.org/pdf/1702.07360.pdf

Interpolation of Sparse High-Dimensional Data [Dr. Thomas Lux]
https://tchlux.github.io/papers/tchlu...

If you are an old fart and offended by the background music, here is the intro (first 60 mins) with no background music. https://drive.google.com/file/d/16bc7...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
#61: Prof. YANN LECUN: Interpolation, Extrapolation and Linearisation (w/ Dr. Randall Balestriero)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Neural Networks Are Elastic Origami! [Prof. Randall Balestriero]

Neural Networks Are Elastic Origami! [Prof. Randall Balestriero]

The Mathematical Foundations of Intelligence [Professor Yi Ma]

The Mathematical Foundations of Intelligence [Professor Yi Ma]

WE MUST ADD STRUCTURE TO DEEP LEARNING BECAUSE...

WE MUST ADD STRUCTURE TO DEEP LEARNING BECAUSE...

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

«Экономическая ситуация меняется так, как не предвидели» — Олег Вьюгин

«Экономическая ситуация меняется так, как не предвидели» — Олег Вьюгин

GPT 5.2 Release, Corporate Collapse in 2026, and 1.1M Job Loss | EP #215

GPT 5.2 Release, Corporate Collapse in 2026, and 1.1M Job Loss | EP #215

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Демис Хассабис: Будущее ИИ, симуляция реальности, физика, игры | Лекс Фридман Подкаст #475

Демис Хассабис: Будущее ИИ, симуляция реальности, физика, игры | Лекс Фридман Подкаст #475

Neural and Non-Neural AI, Reasoning, Transformers, and LSTMs

Neural and Non-Neural AI, Reasoning, Transformers, and LSTMs

Yann Lecun: Meta AI, Open Source, Limits of LLMs, AGI & the Future of AI | Lex Fridman Podcast #416

Yann Lecun: Meta AI, Open Source, Limits of LLMs, AGI & the Future of AI | Lex Fridman Podcast #416

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Dario Amodei: Anthropic CEO on Claude, AGI & the Future of AI & Humanity | Lex Fridman Podcast #452

Dario Amodei: Anthropic CEO on Claude, AGI & the Future of AI & Humanity | Lex Fridman Podcast #452

#038 - Prof. KENNETH STANLEY - Why Greatness Cannot Be Planned

#038 - Prof. KENNETH STANLEY - Why Greatness Cannot Be Planned

Yann LeCun: Dark Matter of Intelligence and Self-Supervised Learning | Lex Fridman Podcast #258

Yann LeCun: Dark Matter of Intelligence and Self-Supervised Learning | Lex Fridman Podcast #258

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Comment les machines pourraient-elles atteindre l'intelligence humaine? Conférence de Yann LeCun

Comment les machines pourraient-elles atteindre l'intelligence humaine? Conférence de Yann LeCun

The Elegant Math Behind Machine Learning

The Elegant Math Behind Machine Learning

КОЛМАНОВСКИЙ: «У меня для вас жареные факты». Когда и как победят рак, ВИРУСЫ, ИИ, Планета обезьян

КОЛМАНОВСКИЙ: «У меня для вас жареные факты». Когда и как победят рак, ВИРУСЫ, ИИ, Планета обезьян

Geoffrey Hinton reveals the surprising truth about AI’s limits and potential

Geoffrey Hinton reveals the surprising truth about AI’s limits and potential

Как строили корабли для мирового господства

Как строили корабли для мирового господства

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]