ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Boosting Performance in NumPy: An Alternative to vectorize for Multithreading Access

Автор: vlogize

Загружено: 2025-10-02

Просмотров: 2

Описание: Discover how to improve your NumPy performance by implementing an alternative to `vectorize` that allows for multithreading access while optimizing execution speed.
---
This video is based on the question https://stackoverflow.com/q/62828478/ asked by the user 'Ram Rachum' ( https://stackoverflow.com/u/76701/ ) and on the answer https://stackoverflow.com/a/62862255/ provided by the user 'Ram Rachum' ( https://stackoverflow.com/u/76701/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: NumPy: Alternative to `vectorize` that lets me access the array

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Boosting Performance in NumPy: An Alternative to vectorize for Multithreading Access

When working with the NumPy library in Python, many developers often rely on the vectorize function for its convenience in applying functions across entire arrays. However, one common problem arises when users want to achieve more control, such as threading, while maintaining performance – often leading to frustration with the execution speed. If you’ve found yourself in this predicament, you’re not alone! Today, we will explore a way to achieve the desired results efficiently by implementing an alternative approach.

The Problem: Slow Performance with for Loops

In a particular scenario, the code below uses the vectorize function to transform an input array:

[[See Video to Reveal this Text or Code Snippet]]

While this works, the goal was to replace it with an approach that allows for threading over the output_array while the calculations are still being performed. The proposed alternative looked like this:

[[See Video to Reveal this Text or Code Snippet]]

Although this code provides the necessary structure for threading, benchmarking revealed severe performance issues:

The for loop was 3 times slower than vectorize on CPython.

It performed a staggering 67 times slower on PyPy3.

This sluggishness is miserable when speed is critical for performance-driven applications.

Why Is the For Loop Slow?

The primary issue originates from how the loop handles the elements of the NumPy array. In particular, conveying each item directly from the array leads to the use of numpy.float64 types, which are not as efficient when being processed in a standard Python environment.

The Solution: Using item.item()

Upon reaching out for help, a solution was provided by Sebastian Berg that addresses the performance bottleneck effectively. The key is to utilize the item.item() method when iterating over the input array. By transforming the numpy.float64 objects into native Python floats, we are able to significantly amplify the speed of the calculations.

Implementation

Here’s how the improved code should look:

[[See Video to Reveal this Text or Code Snippet]]

Benefits

Speed: By converting to Python floats, the execution time is drastically reduced.

Multithreading Compatibility: You can start processing output_array in a separate thread while the loop continues.

Conclusion

Switching from vectorize to a manual loop in NumPy can result in unexpectedly slow performance. However, by applying the simple yet effective adjustment of using item.item(), you can ensure greater speed and maintain the flexibility of accessing output_array concurrently.

If you're working with data-intensive applications, give this approach a try! You may find that small changes yield significant results, keeping your workflows efficient and responsive.

Happy coding!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Boosting Performance in NumPy: An Alternative to vectorize for Multithreading Access

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

threading vs multiprocessing in python

threading vs multiprocessing in python

Advanced NumPy Course - Vectorization, Masking, Broadcasting & More

Advanced NumPy Course - Vectorization, Masking, Broadcasting & More

Учебное пособие по потоковой обработке в Python: от базового до продвинутого (многопоточность, ис...

Учебное пособие по потоковой обработке в Python: от базового до продвинутого (многопоточность, ис...

Хаос в Китае: Apple, Amazon и BMW бегут. Почему начался промышленный обвал?

Хаос в Китае: Apple, Amazon и BMW бегут. Почему начался промышленный обвал?

ESP32 + MLX90640: тепловизор с искусственным интеллектом (TensorFlow Lite)

ESP32 + MLX90640: тепловизор с искусственным интеллектом (TensorFlow Lite)

КАК НЕЛЬЗЯ ХРАНИТЬ ПАРОЛИ (и как нужно) за 11 минут

КАК НЕЛЬЗЯ ХРАНИТЬ ПАРОЛИ (и как нужно) за 11 минут

Многопоточность в Java: объяснение за 10 минут

Многопоточность в Java: объяснение за 10 минут

Что такое стек ИИ? Магистратура LLM, RAG и аппаратное обеспечение ИИ

Что такое стек ИИ? Магистратура LLM, RAG и аппаратное обеспечение ИИ

GIL УМЕР: Python ТЕПЕРЬ многопоточный

GIL УМЕР: Python ТЕПЕРЬ многопоточный

НЕВЕРОЯТНО БЫСТРЫЕ оптимизации C++

НЕВЕРОЯТНО БЫСТРЫЕ оптимизации C++

Превратите ЛЮБОЙ файл в знания LLM за СЕКУНДЫ

Превратите ЛЮБОЙ файл в знания LLM за СЕКУНДЫ

Przestań jeść takie JAJKA – robisz sobie krzywdę!

Przestań jeść takie JAJKA – robisz sobie krzywdę!

Роковая ошибка Jaguar: Как “повестка” в рекламе добила легенду британского автопрома

Роковая ошибка Jaguar: Как “повестка” в рекламе добила легенду британского автопрома

Learn Python multithreading in 8 minutes! 🧵

Learn Python multithreading in 8 minutes! 🧵

Please Master This MAGIC Python Feature... 🪄

Please Master This MAGIC Python Feature... 🪄

Как подключить свои документы к LLM — полный разбор RAG

Как подключить свои документы к LLM — полный разбор RAG

Broadcasting in Numpy

Broadcasting in Numpy

12 ИИ-приёмов, которые превращают Cursor в суперсилу

12 ИИ-приёмов, которые превращают Cursor в суперсилу

Как работает кэш внутри процессора

Как работает кэш внутри процессора

Объяснение тензорных процессоров (TPU)

Объяснение тензорных процессоров (TPU)

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]