ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Beyond Linearity: Mastering Fractional Polynomial Regression in Stata

Автор: How to Master Econometrics: Complete Guide

Загружено: 2026-01-26

Просмотров: 6

Описание: Fractional Polynomial (FP) regression is a flexible parametric approach designed to model nonlinear relationships between a continuous predictor and an outcome variable. Unlike conventional polynomial models that are restricted to positive integer powers (squares, cubes), FP regression selects powers from a predefined set S={−2,−1,−0.5,0,0.5,1,2,3}, where 0 represents the natural logarithm. By allowing combinations of these powers—including repeated powers which introduce logarithmic terms—FP models can capture a diverse array of curve shapes, such as sigmoids or asymptotes. This method is particularly valuable because it avoids the artifacts, such as edge effects and "waves," that often plague high-degree standard polynomials.

Implementing FP regression in Stata is highly automated using the fp prefix command. The basic syntax is fp term: estimation_command, where term is the variable to be transformed. For example, to model the nonlinear effect of vehicle weight on mileage, you would type fp weight: regress mpg weight foreign. Stata automatically iterates through possible power combinations (typically 44 for a second-degree polynomial) and selects the best-fitting model based on the lowest deviance. Essential options include scale, which normalizes large variable values to prevent numerical errors, and center, which simplifies the interpretation of the intercept. Post-estimation, users can utilize fp generate to store the transformed variables for further analysis or prediction.

Comparing Fractional Polynomials and Splines for Curve Fitting

Fractional Polynomial (FP) regression and Splines represent two distinct philosophies for modeling nonlinear relationships: global versus local fitting. FP regression is a parametric approach that extends conventional polynomials by selecting powers from a predefined set that includes negative integers, fractions, and logarithms. A major advantage of FP is parsimony; complex curve shapes can often be modeled effectively using only one or two power terms, thereby avoiding the unstable "waves" and artifacts often produced by high-degree standard polynomials. This makes FP highly effective for capturing smooth, global trends with a concise functional form.

Conversely, regression Splines rely on a piecewise approach, dividing the data range into regions separated by knots and fitting low-degree polynomials within each interval. This piecewise nature grants Splines superior flexibility to model local data features that a global function might miss. However, this flexibility introduces the challenge of selecting the number and placement of knots, which directly influences the model's degrees of freedom. While Splines can adapt to sharp local changes, they risk overfitting or becoming "wiggly" if too many knots are used, whereas FP generally produces smoother, stable curves over the entire range of data.

Comparing Efficiency: Fractional Polynomials vs. High-Degree Polynomials

To compare the effectiveness of fractional polynomial (FP) regression against high-degree conventional polynomials, researchers must evaluate the balance between curve flexibility and model stability. Standard polynomials are restricted to positive integer powers. While increasing the polynomial degree (e.g., to cubic, quartic, or higher) allows for more complex curves, it notoriously introduces undesirable artifacts, such as artificial "waves" or "wiggles" in the fitted function, and results in poor stability at the boundaries of the data, known as edge effects.

In contrast, FP regression addresses these limitations by expanding the candidate powers to include negative integers, fractions, and logarithms. This extension allows FPs to capture a diverse range of functional forms—such as asymptotes or sharp changes in slope—using only one or two terms, whereas a standard polynomial might require a much higher degree to approximate the same shape. Consequently, FP models are generally more parsimonious, offering a superior fit with fewer parameters while avoiding the erratic tail behavior and overfitting problems common in high-degree global polynomials. Ultimately, FPs provide a practical compromise by maintaining the global nature of polynomials while offering the flexibility required for complex nonlinear relationships.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Beyond Linearity: Mastering Fractional Polynomial Regression in Stata

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Learn Statistical Regression in 40 mins! My best video ever. Legit.

Learn Statistical Regression in 40 mins! My best video ever. Legit.

5 простых шагов для решения задач динамического программирования

5 простых шагов для решения задач динамического программирования

Mastering Panel Data in Stata: Handling Heteroskedasticity and Autocorrelation with GLS (xtgls)

Mastering Panel Data in Stata: Handling Heteroskedasticity and Autocorrelation with GLS (xtgls)

Однофакторный дисперсионный анализ

Однофакторный дисперсионный анализ

Базы Данных и Оптимизация Путей | Database Connect | Локальные Переменные | Save Path | Encryption

Базы Данных и Оптимизация Путей | Database Connect | Локальные Переменные | Save Path | Encryption

Regression series (10 videos)

Regression series (10 videos)

LOGARITHMS Top 10 Must Knows (ultimate study guide)

LOGARITHMS Top 10 Must Knows (ultimate study guide)

Control-Function Regression and Implementation in Stata (cfregress command) #stata #econometrics

Control-Function Regression and Implementation in Stata (cfregress command) #stata #econometrics

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Выучите R за 39 минут

Выучите R за 39 минут

Решение показательных уравнений

Решение показательных уравнений

Создание нейронной сети С НУЛЯ (без Tensorflow/Pytorch, только NumPy и математика)

Создание нейронной сети С НУЛЯ (без Tensorflow/Pytorch, только NumPy и математика)

Если у тебя спросили «Как твои дела?» — НЕ ГОВОРИ! Ты теряешь свою силу | Еврейская мудрость

Если у тебя спросили «Как твои дела?» — НЕ ГОВОРИ! Ты теряешь свою силу | Еврейская мудрость

Иллюстрированное руководство по нейронной сети Transformers: пошаговое объяснение

Иллюстрированное руководство по нейронной сети Transformers: пошаговое объяснение

Как происходит модернизация остаточных соединений [mHC]

Как происходит модернизация остаточных соединений [mHC]

Учебник по машинному обучению Python - 2: линейная регрессия с одной переменной

Учебник по машинному обучению Python - 2: линейная регрессия с одной переменной

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

Понимание исчисления (для инженеров)

Понимание исчисления (для инженеров)

Брюс Ли был в спортзале, когда 136-килограммовый бодибилдер сказал ему: «Ты — одни кости» — спуст...

Брюс Ли был в спортзале, когда 136-килограммовый бодибилдер сказал ему: «Ты — одни кости» — спуст...

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]