Math 4120, 12/3/2025
Автор: Jim Coykendall
Загружено: 2025-12-03
Просмотров: 22
Описание: Proof that an integral domain is a PID if and only if every prime ideal of R is principal (the theorem also contains the analogous statement for Noetherian rings). Then we look at UFDs (R is a UFD if and only if every nonzero, nonunit is a product of primes and a domain is a UFD if and only if every nonzero prime ideal contains a nonzero prime element).
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: