ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Fixing the ValueError in Simple Linear Regression with Gradient Descent in Python

Автор: vlogize

Загружено: 2025-09-28

Просмотров: 0

Описание: Learn how to resolve the common `ValueError: Unable to coerce to Series` issue when implementing simple linear regression using gradient descent. Discover key tips for reshaping data and improving convergence in your model.
---
This video is based on the question https://stackoverflow.com/q/63591667/ asked by the user 'Pankaj Shakya' ( https://stackoverflow.com/u/11159956/ ) and on the answer https://stackoverflow.com/a/63598152/ provided by the user 'YuseqYaseq' ( https://stackoverflow.com/u/1800970/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: ValueError: Unable to coerce to Series, length must be 1: given 506

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding and Fixing the ValueError in Simple Linear Regression with Gradient Descent

When working with machine learning models in Python, especially using libraries like pandas, you may encounter various errors that can halt your progress. One such common issue arises when implementing simple linear regression with gradient descent. A user recently faced a particular error:

[[See Video to Reveal this Text or Code Snippet]]

This error can be confusing, especially if you are unsure where it originates in your code. In this guide, we will break down this problem and provide a clear solution to resolve it effectively.

The Problem

As cited by the user, the error appears during the fitting of the model:

[[See Video to Reveal this Text or Code Snippet]]

Examining X_train_std and y, we find:

X_train_std.shape: (506, 13)

y.shape: (506, 1)

This suggests that X is a two-dimensional input feature set consisting of 506 samples, each with 13 features, whereas y represents the target variable with 506 samples but structured as a two-dimensional array.

Why the Error Occurs

The critical point here is that the output generated inside the model's fit function is one-dimensional, while y is two-dimensional. If they do not match in dimensions while performing operations, it often leads to coercion errors in pandas, causing the dreaded ValueError. The output from your net_input method does not align with the structure of y during the evaluation of the error, thereby producing this length mismatch.

The Solution

To resolve this ValueError, you will need to reshape the output produced by your network input calculation. Here’s how you can easily fix the code:

Step 1: Reshape the Output

Modify the line in the fit method where output is calculated by adding .reshape(-1, 1) to ensure it matches the dimensions of y:

[[See Video to Reveal this Text or Code Snippet]]

This adjustment will allow output to become a two-dimensional array, thereby aligning correctly with y.

Step 2: Update Weights with Proper Convergence

In addition to reshaping the output, it is important to address the convergence issue in your weight updates. The original weight update line reads:

[[See Video to Reveal this Text or Code Snippet]]

As suggested, this can be replaced with a more effective approach by using the np.sum function along with an axis argument. The revised weight update line would be:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Tweak Learning Rate if Necessary

Finally, if you still notice that the model is not converging, consider experimenting with different values for the learning rate (eta). Sometimes a small change in this parameter can significantly improve the convergence of your model.

Conclusion

By addressing the dimensional mismatch between your model's outputs and the target variable, you can eliminate the ValueError while also refining your model's learning process through appropriate weight updates. This combination of adjustments not only resolves the specific error but also enhances the overall robustness of your regression model using gradient descent.

Efficient error handling and model tuning are key aspects of successful machine learning implementations. We hope this guide assists you in your journey to mastering linear regression with gradient descent in Python. Happy coding!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Fixing the ValueError in Simple Linear Regression with Gradient Descent in Python

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Роковая ошибка Jaguar: Как “повестка” в рекламе добила легенду британского автопрома

Роковая ошибка Jaguar: Как “повестка” в рекламе добила легенду британского автопрома

Убей скучный Excel: сделай ВЕБ-дашборд без кода с помощью ИИ (пошаговый гайд)

Убей скучный Excel: сделай ВЕБ-дашборд без кода с помощью ИИ (пошаговый гайд)

Activate venv in Jupyter Notebook | Fix Kernel Issues | Python Tutorial

Activate venv in Jupyter Notebook | Fix Kernel Issues | Python Tutorial

Распаковка самого умного банкомата Сбера с ИИ и голосовым ассистентом

Распаковка самого умного банкомата Сбера с ИИ и голосовым ассистентом

Более интеллектуальное k-разбиение ZX-диаграмм для улучшения моделирования квантовых схем — Мэтью...

Более интеллектуальное k-разбиение ZX-диаграмм для улучшения моделирования квантовых схем — Мэтью...

Did ChatGPT Just Kill Nano Banana?

Did ChatGPT Just Kill Nano Banana?

NEB Class 11 English Unit 1 all Exercise |

NEB Class 11 English Unit 1 all Exercise |

Как бесплатно разместить сайт с базой данных с помощью InfinityFree (пошаговое руководство)

Как бесплатно разместить сайт с базой данных с помощью InfinityFree (пошаговое руководство)

Muzyka Świąteczna 2025 🎄 Najpiękniejsze Piosenki na Boże Narodzenie ❄ Klasyczne Hity

Muzyka Świąteczna 2025 🎄 Najpiękniejsze Piosenki na Boże Narodzenie ❄ Klasyczne Hity

ESP32 + MLX90640: тепловизор с искусственным интеллектом (TensorFlow Lite)

ESP32 + MLX90640: тепловизор с искусственным интеллектом (TensorFlow Lite)

Afera z

Afera z "cichymi doradcami" w PZU. Tak się broni przyjaciółka Kaczyńskiego

Przestań jeść takie JAJKA – robisz sobie krzywdę!

Przestań jeść takie JAJKA – robisz sobie krzywdę!

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

[ANSWER] INSTRUCTIONS FOR ANALYTICAL RESEARCH PAPER

[ANSWER] INSTRUCTIONS FOR ANALYTICAL RESEARCH PAPER

Quillbot Premium бесплатно — 100% легальный и рабочий метод | Productive Tech

Quillbot Premium бесплатно — 100% легальный и рабочий метод | Productive Tech

MĘCZARNIE BARCELONY, TRZECIOLIGOWIEC SIĘ POSTAWIŁ! GOLE CHRISTENSENA I RASHFORDA NA WAGĘ AWANSU

MĘCZARNIE BARCELONY, TRZECIOLIGOWIEC SIĘ POSTAWIŁ! GOLE CHRISTENSENA I RASHFORDA NA WAGĘ AWANSU

Reinforcement Learning Tutorial - RLVR with NVIDIA & Unsloth

Reinforcement Learning Tutorial - RLVR with NVIDIA & Unsloth

Czuchnowski i brudna gra ws. Cenckiewicza. Nagrody za dziennikarstwo w likwidacji | Codziennie Burza

Czuchnowski i brudna gra ws. Cenckiewicza. Nagrody za dziennikarstwo w likwidacji | Codziennie Burza

Najlepsze Świąteczne Piosenki Polskie 2026 🎁🎄 Boże Narodzenie 2026 🎅🎄 Świąteczna Składanka 2026

Najlepsze Świąteczne Piosenki Polskie 2026 🎁🎄 Boże Narodzenie 2026 🎅🎄 Świąteczna Składanka 2026

The AI Bubble Explained Like You're 5

The AI Bubble Explained Like You're 5

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]