ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Burnside's Lemma (Part 1) - combining group theory and combinatorics

Автор: Mathemaniac

Загружено: 2020-08-20

Просмотров: 37416

Описание: A result often used in math competitions, Burnside's lemma is an interesting result in group theory that helps us count things with symmetries considered, e.g. in some situations, we don't want to count things that can be transformed into one another by rotation different, like in this case - how many ways are there to paint a cube's faces when we are given three colors, if two coloring patterns are considered the same when they differ just by a rotation?

This channel is meant to showcase interesting but underrated maths (and physics) topics and approaches, either with completely novel topics, or a well-known topic with a novel approach. If the novel approach resonates better with you, great! But the videos have never meant to be pedagogical - in fact, please please PLEASE do NOT use YouTube videos to learn a subject.

There is usually also something called Pólya Enumeration Theorem, which is a generalization of Burnside's lemma, and can be used to tackle a wider set of problems, but most problems that Pólya Enumeration Theorem can be applied to can also be tackled by Burnside's lemma, so this is usually more important. The theorem simply extracts the core of what we are doing and put it in a nice generating function, which can be useful, but the notation and the computations required are very troublesome, and does not fit well too well with the theme of this channel.

Non-mathematical applications like counting the number of isomers of an organic molecule (organic chemistry) and the number of trichords (music theory) are usually tackled by the theorem mentioned above, but this can really be tackled by Burnside's lemma, just with a bit more care. We will explore how this can be applied in those situations in the next video.

By the way, this lemma is not actually first discovered by Burnside, and the Pólya Enumeration theorem is also not first discovered by Pólya, but this phenomenon is also prevalent throughout mathematics and science, known as Stigler's law of eponymy.

This is not a part of the "Essence of Group Theory" video series, because it is not "essence", but an application of the orbit-stabilizer theorem, which is in Chapter 2 of the video series:    • Chapter 2: Orbit-Stabiliser Theorem | Esse...  

Other than commenting on the video, you are very welcome to fill in a Google form linked below, which helps me make better videos by catering for your math levels:
https://forms.gle/QJ29hocF9uQAyZyH6

If you want to know more interesting Mathematics, stay tuned for the next video!

SUBSCRIBE and see you in the next video!

If you are wondering how I made all these videos, even though it is stylistically similar to 3Blue1Brown, I don't use his animation engine Manim, but I will probably reveal how I did it in a potential subscriber milestone, so do subscribe!

Social media:

Facebook:   / mathemaniacyt  
Instagram:   / _mathemaniac_  
Twitter:   / mathemaniacyt  

For my contact email, check my About page on a PC.

See you next time!

#mathemaniac #grouptheory #abstractalgebra #burnside #mathematics

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Burnside's Lemma (Part 1) - combining group theory and combinatorics

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Burnside's Lemma (Part 2) - combining math, science and music

Burnside's Lemma (Part 2) - combining math, science and music

Burnside's lemma: counting up to symmetries

Burnside's lemma: counting up to symmetries

ЭТО АЛГЕБРА, ДЕТКА! Метод Софи Жермен!

ЭТО АЛГЕБРА, ДЕТКА! Метод Софи Жермен!

Почему случайные блуждания теряются в 3D?

Почему случайные блуждания теряются в 3D?

My Videos in English

My Videos in English

Почему Питер Шольце — математик, каких бывает раз в поколение?

Почему Питер Шольце — математик, каких бывает раз в поколение?

Burnside's Lemma - An Introduction to Group Theory

Burnside's Lemma - An Introduction to Group Theory

Теорема Бернсайда о подсчете орбит

Теорема Бернсайда о подсчете орбит

The Obviously True Theorem No One Can Prove

The Obviously True Theorem No One Can Prove

Восстановление работы ВСЕГО ОДНОЙ МЫШЦЫ - может улучшить Ваше зрение!

Восстановление работы ВСЕГО ОДНОЙ МЫШЦЫ - может улучшить Ваше зрение!

What is the square root of two? | The Fundamental Theorem of Galois Theory

What is the square root of two? | The Fundamental Theorem of Galois Theory

Самые удовлетворяющие видео рабочих, идеально выполняющих свою работу!

Самые удовлетворяющие видео рабочих, идеально выполняющих свою работу!

Why There's 'No' Quintic Formula (proof without Galois theory)

Why There's 'No' Quintic Formula (proof without Galois theory)

What is Lie theory? Here is the big picture. | Lie groups, algebras, brackets #3

What is Lie theory? Here is the big picture. | Lie groups, algebras, brackets #3

A Dozen Proofs: Sum of Integers Formula (visual proofs) #SoME2

A Dozen Proofs: Sum of Integers Formula (visual proofs) #SoME2

Блез Паскаль: вундеркинд, унизивший математиков своего времени.

Блез Паскаль: вундеркинд, унизивший математиков своего времени.

Proof & Example: Orbit-Stabilizer Theorem - Group Theory

Proof & Example: Orbit-Stabilizer Theorem - Group Theory

Outside In

Outside In

Icosahedral symmetry - conjugacy classes and simplicity

Icosahedral symmetry - conjugacy classes and simplicity

I finally find least action principle satisfying

I finally find least action principle satisfying

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]