ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

FHTW01 | Dr. Simone Pezzuto | Enabling high-dimensional uncertainty quantification

Автор: INI Seminar Room 1

Загружено: 2025-12-15

Просмотров: 2

Описание: FHTW01 | Dr. Simone Pezzuto | Enabling high-dimensional uncertainty quantification for cardiac electrophysiology via multifidelity techniques

Speaker: Dr Simone Pezzuto (Università della Svizzera italiana)
Date: 5th Jun 2019 - 17:00 to 17:30
Venue: INI Seminar Room 1
Title: Enabling high-dimensional uncertainty quantification for cardiac electrophysiology via multifidelity techniques
Event: (FHTW01) Uncertainty quantification for cardiac models
Abstract: <span>
 <span>Mathematical
 modeling of the heart, as many other models in biomedical sciences, involves
 a large number of parameters and simplifying approximations. Uncertainties
 for cardiac models are ubiquitous, including anatomy, fiber direction, and
 electric and mechanical properties of the tissue. Hence, both UQ and
 parameter sensitivity naturally arise during modeling, and they shall become
 fundamental in view of clinical applications.<br>
 <br>
 For high-dimensional input uncertainties, e.g., substrate heterogeneity or
 cardiac fibers orientation, and high-dimensional output quantities of
 interest, e.g., the activation map, the method of choice for UQ is the
 classic Monte Carlo (MC) method. MC convergence rate does not suffer from the
 curse of dimensionality, but it is notoriously slow. While sampling a random
 field can be done very efficiently via the pivoted Cholesky decomposition,
 computing the cardiac activation from the bidomain equation is a
 computational demanding task. A single patient-tailored simulation can take
 several CPU-hours even on a large cluster. This makes uncertainty
 quantification (UQ) unfeasible, unless modeling reduction strategies are
 employed.<br>
 <br>
 One such strategy is represented by multifidelity methods [1]. A key ingredient
 of the multifidelity approach is the choice of low-fidelity models. Typical
 strategies are projection-based or data-fit surrogates, which however need to
 be trained anew for each patient and may become inefficient for a large
 dimensionality of the input, as in the case under consideration. Instead, a
 more physics-based approach is to take advantage of the natural hierarchy of
 available models. These include different cellular models for the monodomain
 equation, the time-independent eikonal equation, and the 1D geodesic point
 activation [2,3]. By exploiting statistical correlations in this hierarchy,
 we observed a reduction of the computational cost by at least two orders of
 magnitude, enabling to perform a full analysis within a reasonable time
 frame. Moreover, we incorporate Bayesian techniques, which provide confidence
 intervals and full probability distributions at selected points, thus
 augmenting the information provided by standard frequentist approaches.
 <br>
 <br>
 References:<br>
 [1] Peherstorfer, B., Willcox, K., & Gunzburger, M. (2018). Survey of
 multifidelity methods in uncertainty propagation, inference, and
 optimization. SIAM Review, 60(3), 550-591.<br>
 [2] Quaglino, A., Pezzuto, S., Koutsourelakis, P.S., Auricchio, A., Krause,
 R. (2018). Fast uncertainty quantification of activation sequences in
 patient-specific cardiac electrophysiology meeting clinical time constraints.
 Int J Numer Meth Biomed Engng, e2985.<br>
 [3] Quaglino, A., Pezzuto, S., Krause, R. (2018). Generalized Multifidelity
 Monte Carlo Estimators. Submitted to J Comp Phys. ArXiv: 1807.10521</span></span>

-------------------

FOLLOW US
🌐| Website: https://www.newton.ac.uk
🎥| Main Channel:    / @isaacnewtoninstitute  
🐦| Twitter:   / newtoninstitute  
💬| Facebook:   / newton.institute  
📷| Instagram:   / isaacnewtoninstitute  
🔗| LinkedIn:   / isaac-newton-institute-for-mathematical-sc...  

SEMINAR ROOMS
🥇| INI Seminar Room 1:    / @iniseminarroom1  
🥈| INI Seminar Room 2:    / @iniseminarroom2  
🛰️| INI Satellite Events:    / @inisatellite  


👉 Learn more about us and our events here: https://www.newton.ac.uk

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
FHTW01 | Dr. Simone Pezzuto | Enabling high-dimensional uncertainty quantification

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

ARA | Dr. Mauricio Martinez Guerrero | Non-Newtonian fluid behavior and Hydrodynamization Lessons...

ARA | Dr. Mauricio Martinez Guerrero | Non-Newtonian fluid behavior and Hydrodynamization Lessons...

High energy spectral theory: geometry and dynamics [GSTW01] | Tuesday13th January

High energy spectral theory: geometry and dynamics [GSTW01] | Tuesday13th January

USACM Uncertainty Quantification and Probabilistic Modeling TTA Seminar - Ionut-Gabriel Farcas

USACM Uncertainty Quantification and Probabilistic Modeling TTA Seminar - Ionut-Gabriel Farcas

Why does light exist? - with Gideon Koekoek

Why does light exist? - with Gideon Koekoek

High energy spectral theory: geometry and dynamics [GSTW01] | Tuesday13th January

High energy spectral theory: geometry and dynamics [GSTW01] | Tuesday13th January

Deep and Multi-fidelity learning with Gaussian processes: Andreas Damianou, Amazon

Deep and Multi-fidelity learning with Gaussian processes: Andreas Damianou, Amazon

What is high dimensional data?

What is high dimensional data?

Гренландия: остров китов, нищеты и алкоголизма | Интервью с местными, снег, лед и хаски

Гренландия: остров китов, нищеты и алкоголизма | Интервью с местными, снег, лед и хаски

Nvidia's Jensen Huang on an AI Bubble, Trump, and the Arms Race with China

Nvidia's Jensen Huang on an AI Bubble, Trump, and the Arms Race with China

Carl Sagan's 1994

Carl Sagan's 1994 "Lost" Lecture: The Age of Exploration

Dimensionality Reduction: High Dimensional Data, Part 1

Dimensionality Reduction: High Dimensional Data, Part 1

Qualitative vs Quantitative vs Mixed Methods Research: How To Choose Research Methodology

Qualitative vs Quantitative vs Mixed Methods Research: How To Choose Research Methodology

Спектроскопия с помощью прибора Seestar S50

Спектроскопия с помощью прибора Seestar S50

Cardiovascular | Electrophysiology | Intrinsic Cardiac Conduction System

Cardiovascular | Electrophysiology | Intrinsic Cardiac Conduction System

2014 Three Minute Thesis winning presentation by Emily Johnston

2014 Three Minute Thesis winning presentation by Emily Johnston

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Coupling Particle Simulations: Challenges, Strategies, and the ON-DEM Vision

Coupling Particle Simulations: Challenges, Strategies, and the ON-DEM Vision

The Turing Lectures: The future of generative AI

The Turing Lectures: The future of generative AI

IPAM

IPAM "Multi-Fidelity Methods for Fusion Energy" Spring 2026 Program Overview

Простой способ №1 ОСТАНОВИТЬ деменцию заранее! Токсиколог Водовозов

Простой способ №1 ОСТАНОВИТЬ деменцию заранее! Токсиколог Водовозов

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]