ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

LlamaIndex Explained: Connect LLMs with Your Data using Python! 🦙📊

Llama Index

GP TIndex

RAG

Lang Chain

Vector Databases

AI Frameworks

Python AI

LLMs

Open AI

Chroma DB

Pine cone

Qdrant

Data Engineering

AI Agents

Generative AI

Enterprise AI

Emerging Tech

Deep Learning

Автор: CodeVisium

Загружено: 2025-10-11

Просмотров: 1504

Описание: 1️⃣ What is LlamaIndex?
LlamaIndex (formerly GPT Index) is a framework that bridges Large Language Models (LLMs) like GPT-4 or Claude with your private or structured data.
It simplifies data ingestion, indexing, and retrieval, making it perfect for chatbots, RAG systems, and enterprise search applications.

LlamaIndex = Data → Index → Query → Response 💡

2️⃣ Difference Between LlamaIndex & LangChain

LangChain: Focuses on chaining LLM calls and building complex agent workflows.

LlamaIndex: Focuses on connecting data (documents, databases, APIs) to LLMs through retrieval and contextual understanding.

They can also integrate together — LangChain for orchestration, LlamaIndex for knowledge retrieval.

3️⃣ Core Components of LlamaIndex

✅ Document Loaders – Import data from PDFs, websites, databases, etc.
✅ Indices – Organize and store vectorized data for efficient querying.
✅ Retrievers – Fetch the most relevant chunks of data for a query.
✅ Query Engines – Interface between LLMs and data sources.
✅ Response Synthesizers – Generate human-like responses using retrieved context.

4️⃣ Example: Document-Based Q&A with LlamaIndex

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

Step 1: Load your data
documents = SimpleDirectoryReader("data/").load_data()

Step 2: Create an index
index = VectorStoreIndex.from_documents(documents)

Step 3: Query your data
query_engine = index.as_query_engine()
response = query_engine.query("Summarize the contents of report.pdf")
print(response)


📘 Output:

“The report covers AI model optimization techniques for 2025 with detailed benchmarks.”

This is Retrieval-Augmented Generation (RAG) in action — your LLM now talks directly to your own data.

5️⃣ Indices & Retrievers in LlamaIndex

Indices help structure your data (e.g., TreeIndex, VectorIndex, KeywordIndex).

Retrievers find and rank relevant pieces of information.

Together, they ensure accurate, context-aware answers instead of hallucinations.

🔥 Why It’s Trending

Foundation for enterprise-grade RAG systems

Integrates with LangChain, OpenAI, ChromaDB, Pinecone, FAISS, Qdrant

Enables contextual chatbots, AI search, and private LLMs

Lightweight and developer-friendly

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
LlamaIndex Explained: Connect LLMs with Your Data using Python! 🦙📊

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]