LlamaIndex Explained: Connect LLMs with Your Data using Python! 🦙📊
Автор: CodeVisium
Загружено: 2025-10-11
Просмотров: 1504
Описание:
1️⃣ What is LlamaIndex?
LlamaIndex (formerly GPT Index) is a framework that bridges Large Language Models (LLMs) like GPT-4 or Claude with your private or structured data.
It simplifies data ingestion, indexing, and retrieval, making it perfect for chatbots, RAG systems, and enterprise search applications.
LlamaIndex = Data → Index → Query → Response 💡
2️⃣ Difference Between LlamaIndex & LangChain
LangChain: Focuses on chaining LLM calls and building complex agent workflows.
LlamaIndex: Focuses on connecting data (documents, databases, APIs) to LLMs through retrieval and contextual understanding.
They can also integrate together — LangChain for orchestration, LlamaIndex for knowledge retrieval.
3️⃣ Core Components of LlamaIndex
✅ Document Loaders – Import data from PDFs, websites, databases, etc.
✅ Indices – Organize and store vectorized data for efficient querying.
✅ Retrievers – Fetch the most relevant chunks of data for a query.
✅ Query Engines – Interface between LLMs and data sources.
✅ Response Synthesizers – Generate human-like responses using retrieved context.
4️⃣ Example: Document-Based Q&A with LlamaIndex
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
Step 1: Load your data
documents = SimpleDirectoryReader("data/").load_data()
Step 2: Create an index
index = VectorStoreIndex.from_documents(documents)
Step 3: Query your data
query_engine = index.as_query_engine()
response = query_engine.query("Summarize the contents of report.pdf")
print(response)
📘 Output:
“The report covers AI model optimization techniques for 2025 with detailed benchmarks.”
This is Retrieval-Augmented Generation (RAG) in action — your LLM now talks directly to your own data.
5️⃣ Indices & Retrievers in LlamaIndex
Indices help structure your data (e.g., TreeIndex, VectorIndex, KeywordIndex).
Retrievers find and rank relevant pieces of information.
Together, they ensure accurate, context-aware answers instead of hallucinations.
🔥 Why It’s Trending
Foundation for enterprise-grade RAG systems
Integrates with LangChain, OpenAI, ChromaDB, Pinecone, FAISS, Qdrant
Enables contextual chatbots, AI search, and private LLMs
Lightweight and developer-friendly
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: