ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Deep Learning for Post-Processing Ensemble Weather Forecasts

Автор: Scalable Parallel Computing Lab, SPCL @ ETH Zurich

Загружено: 2020-12-17

Просмотров: 1098

Описание: Speaker: Peter Grönquist

Journal: Philosophical Transactions of the Royal Society A. 2021.

Abstract: Quantifying uncertainty in weather forecasts is critical, especially for predicting extreme weather events. This is typically accomplished with ensemble prediction systems, which consist of many perturbed numerical weather simulations, or trajectories, run in parallel. These systems are associated with a high computational cost and often involve statistical post-processing steps to inexpensively improve their raw prediction qualities. We propose a mixed model that uses only a subset of the original weather trajectories combined with a post-processing step using deep neural networks. These enable the model to account for non-linear relationships that are not captured by current numerical models or post-processing methods. Applied to global data, our mixed models achieve a relative improvement in ensemble forecast skill (CRPS) of over 14%. Furthermore, we demonstrate that the improvement is larger for extreme weather events on select case studies. We also show that our post-processing can use fewer trajectories to achieve comparable results to the full ensemble. By using fewer trajectories, the computational costs of an ensemble prediction system can be reduced, allowing it to run at higher resolution and produce more accurate forecasts.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Deep Learning for Post-Processing Ensemble Weather Forecasts

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

EDAN: Towards Understanding Memory Parallelism and Latency Sensitivity in HPC

EDAN: Towards Understanding Memory Parallelism and Latency Sensitivity in HPC

Ensemble Forecasting Explained

Ensemble Forecasting Explained

ARMing GPUs for Impactful Science with the GH200 Superchip (and true Exascale)

ARMing GPUs for Impactful Science with the GH200 Superchip (and true Exascale)

Deep Learning for Weather Prediction and Ensemble Post-Processing

Deep Learning for Weather Prediction and Ensemble Post-Processing

Weather Models 101

Weather Models 101

Correcting Unfairness in Machine Learning | Pre-processing, In-processing, Post-processing

Correcting Unfairness in Machine Learning | Pre-processing, In-processing, Post-processing

Why Weather Forecasts Suck

Why Weather Forecasts Suck

From Large Language Models to Reasoning Language Models - Three Eras in The Age of Computation.

From Large Language Models to Reasoning Language Models - Three Eras in The Age of Computation.

Machine Learning for Post-Processing Precipitation Forcasts - Kyle Sha - AMS - January 2022

Machine Learning for Post-Processing Precipitation Forcasts - Kyle Sha - AMS - January 2022

Learning Pandas for Data Analysis? Start Here.

Learning Pandas for Data Analysis? Start Here.

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]