ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

[POPL'26] The Simple Essence of Boolean-Algebraic Subtyping: Semantic Soundness for Algebraic(…)

Автор: ACM SIGPLAN

Загружено: 2026-01-27

Просмотров: 6

Описание: The Simple Essence of Boolean-Algebraic Subtyping: Semantic Soundness for Algebraic Union, Intersection, Negation, and Equi-recursive Types (Video, POPL 2026)
Chun Yin Chau, Lionel Parreaux
(Hong Kong University of Science and Technology, Hong Kong; Hong Kong University of Science and Technology, Hong Kong)

Abstract: Boolean-algebraic subtyping (BAS) is a powerful subtyping approach introduced in 2022 as the ``secret sauce'' enabling backtracking-free principal type inference in the MLstruct research language, a structurally-typed functional programming language with tagged records, tag and record subtyping, and tag-based pattern matching. By supporting distributive intersection, union, negation, and equi-recursive types, MLstruct can express powerful programming patterns, such as subtyped extensible variants, without needing row variables. But the use of atypical subtyping rules that violate some interpretations of intersection and union types, the mutual distributivity between these types, and the complexity of coinductive reasoning for equi-recursive types have collectively made the study of BAS difficult. The syntactic soundness proofs provided in the original work are dauntingly complicated and long-winded, obscuring the intuitions behind the correctness of BAS.

In this paper, we distill the simple essence of Boolean-algebraic subtyping: we discover that BAS can be understood through five families of characteristic Boolean homomorphisms defined on types in context. Two of these map to power sets of simpler objects; the rest map back to types, but under an unguarded coinductive assumptions context. Together, these homomorphisms let us prove rather directly that BAS is sound, in that it does not relate constructors of incompatible runtime shapes. These homomorphisms are characteristic in the sense that they are sufficient to capture the meaning of subyping: we prove that if an inequality holds between two types under all these homomorphisms, then subtyping holds between the two types in the original context. This directly suggests a new subtyping decision procedure for BAS, which avoids some inefficiencies in the original algorithm, although it still has exponential worst-case time complexity. We prove that the subtyping problem is in fact co-NP-hard even without recursive types. Finally, we discover that BAS is already powerful enough to encode the removal of a field from a type. This allows us to support extensible records through one new term form and one new typing rule, but, perhaps surprisingly, no changes to subtyping at all.

Our new approach to the semantics of BAS sheds some light on the core of MLstruct’s type system. It could be adapted to other languages with algebraic flavors of subtyping, such as Scala 3 and Ceylon, making their design and verification more approachable. Tellingly, all our subtyping soundness proofs fit inside the main body of this paper, with only some administrative lemmas relegated to the appendix.

Article: https://doi.org/10.1145/3776689

Supplementary archive: https://doi.org/10.5281/zenodo.17348546 (Badges: Artifacts Available, Artifacts Evaluated — Reusable)

ORCID: https://orcid.org/0000-0003-0323-6644, https://orcid.org/0000-0002-8805-0728

Video Tags: subtyping, Boolean algebra, extensible records, structural types, doi:10.1145/3776689, doi:10.5281/zenodo.17348546, orcid:0000-0003-0323-6644, orcid:0000-0002-8805-0728, Artifacts Available, Artifacts Evaluated — Reusable

Presentation at the POPL 2026 conference, Jan 11-17, 2026, https://popl26.sigplan.org/
Sponsored by ACM SIGPLAN.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
[POPL'26] The Simple Essence of Boolean-Algebraic Subtyping: Semantic Soundness for Algebraic(…)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

[CPP'26] How can Machine Learning Help Formal Proving ?

[CPP'26] How can Machine Learning Help Formal Proving ?

[CPP'26] Using Ghost Ownership to Verify Union-Find and Persistent Arrays in Rust

[CPP'26] Using Ghost Ownership to Verify Union-Find and Persistent Arrays in Rust

[CPP'26] Can we formalise type theory intrinsically without any compromise? A case study in(…)

[CPP'26] Can we formalise type theory intrinsically without any compromise? A case study in(…)

[CPP'26] Mechanizing Synthetic Tait Computability in Istari

[CPP'26] Mechanizing Synthetic Tait Computability in Istari

Автоматизация Баз Данных с Database Connectivity Toolkit | State Machine | Global Variable Feedback

Автоматизация Баз Данных с Database Connectivity Toolkit | State Machine | Global Variable Feedback

Cybersecurity - Lecture videos

Cybersecurity - Lecture videos

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

✓ Триангуляция сферы. Математика для химии и геймдева | Математика вокруг нас | Борис Трушин

✓ Триангуляция сферы. Математика для химии и геймдева | Математика вокруг нас | Борис Трушин

Самая Сложная Задача В Истории Самой Сложной Олимпиады

Самая Сложная Задача В Истории Самой Сложной Олимпиады

[CPP'26] Higher order differential calculus in Mathlib

[CPP'26] Higher order differential calculus in Mathlib

Отключение связи и коммунальные аварии. S09E21

Отключение связи и коммунальные аварии. S09E21

Учебное пособие по ClickUp — Как использовать ClickUp для начинающих

Учебное пособие по ClickUp — Как использовать ClickUp для начинающих

Спейс и Зодиак. Хиты восьмидесятых. Космическая музыка.

Спейс и Зодиак. Хиты восьмидесятых. Космическая музыка.

ВЕНЕДИКТОВ: Почему война идет 4 года. Китай и захват России. Трампа недооценили. Гренландия. Иран

ВЕНЕДИКТОВ: Почему война идет 4 года. Китай и захват России. Трампа недооценили. Гренландия. Иран

[CPP'26] Certifying the decidability of the word problem in monoids at large

[CPP'26] Certifying the decidability of the word problem in monoids at large

[CPP'26] Specification, Semantics, and Verification of Quantum Programs

[CPP'26] Specification, Semantics, and Verification of Quantum Programs

Почему Екатерина Шульман не попала в ПАСЕ, несмотря на победу в опросах?

Почему Екатерина Шульман не попала в ПАСЕ, несмотря на победу в опросах?

Румынская математическая олимпиада

Румынская математическая олимпиада

Top 50 SHAZAM⛄Лучшая Музыка 2026⛄Зарубежные песни Хиты⛄Популярные Песни Слушать Бесплатно #84

Top 50 SHAZAM⛄Лучшая Музыка 2026⛄Зарубежные песни Хиты⛄Популярные Песни Слушать Бесплатно #84

BTEC Applied Science: Раздел 3, январь 2021 г., прошлый доклад Дэйва

BTEC Applied Science: Раздел 3, январь 2021 г., прошлый доклад Дэйва

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]