Vector Calculus Operators Grad, Curl, Div in Differential Geometry on Curved Manifolds
Автор: Tensor Calculus - Robert Davie
Загружено: 2025-02-20
Просмотров: 801
Описание: In Euclidean space ℝ^3 , vector calculus operators—gradient (grad), curl, and divergence (div)—are defined using partial derivatives. However, on a curved Riemannian or semi-Riemannian manifold, these operators require the use of differential forms, the metric tensor, and the Levi-Civita connection. This formulation generalizes vector calculus to arbitrary curved spaces, including applications in general relativity and differential geometry.
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: