Rethinking Trust Region in LLM Reinforcement Learning PPO Limitations and DPPO for Stable FineTuning
Автор: CosmoX
Загружено: 2026-02-16
Просмотров: 2
Описание:
📌 This video analyzes the structural limitations of Proximal Policy Optimization (PPO) in reinforcement learning for LLM fine-tuning, and introduces Divergence PPO (DPPO) as a principled alternative.
🔥 Key Highlights
🤖 Why traditional trust region clipping in PPO fails with large vocabularies
📉 How ratio clipping over-penalizes rare tokens and under-constrains frequent ones
📚 DPPO’s divergence-based approach (Total Variation / KL)
🚀 Efficient Binary & Top-K divergence approximations for LLMs
📊 Empirical evidence of improved training stability and efficiency
🔎 Great for viewers interested in
✔️ Advanced RL for LLM alignment
✔️ Trust region methods beyond PPO
✔️ Robust policy optimization techniques
#LLM #ReinforcementLearning #AI #PPO #DPPO #TrustRegion #MachineLearning
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: