ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Structure Of Boolean Almost Low Degree Functions On The Biased Cube

Автор: Simons Institute for the Theory of Computing

Загружено: 2023-07-28

Просмотров: 623

Описание: Yuval Filmus (Technion - Israel Institute of Technology)
https://simons.berkeley.edu/talks/yuv...
Structural Results

The FKN theorem states that if a Boolean function on the Boolean cube is close to degree 1, then it is close to a dictator.
Similarly, the Kindler–Safra theorem states that if a Boolean function on the Boolean cube is close to degree d, then it is close to a junta.

The picture becomes more interesting when we study functions on the p-biased Boolean cube.
If a Boolean function is 𝜀-close to degree 1, then (up to negation) it is O(𝜀)-close to a maximum of O(√𝜀/p+1) coordinates, and so O(√𝜀+p)-close to a constant function.
A similar statement holds for functions close to degree d, but the corresponding structure is more complicated.

Another setting we might discuss is functions on the symmetric group.
If a Boolean function is 𝜀-close to degree 1, then it is O(√𝜀)-close to a dictator (suitably defined), and O(𝜀)-close (up to negation) to a union of “mostly disjoint” cosets.
A similar statement should hold for degree d, where the function ought to be close to a (suitably defined) decision tree of depth poly(d).

Joint work with Irit Dinur (Weizmann Institute) and Prahladh Harsha (TIFR).

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Structure Of Boolean Almost Low Degree Functions On The Biased Cube

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Nearly all k-SAT Functions are Unate

Nearly all k-SAT Functions are Unate

Introduction to Poisson Geometry - Thomas Karabela

Introduction to Poisson Geometry - Thomas Karabela

Frequency-Domain Analysis of a Discrete-Time LTI System | Solved Problem

Frequency-Domain Analysis of a Discrete-Time LTI System | Solved Problem

69  - The Cayley-Hamilton theorem

69 - The Cayley-Hamilton theorem

46 - The implicit function theorem for systems of equations

46 - The implicit function theorem for systems of equations

In-Context Learning &

In-Context Learning & "Model Systems" Interpretability (Stanford lecture 3) - Ekdeep Singh Lubana

Short Industry Talks pt.2

Short Industry Talks pt.2

AI’s Models of the World, and Ours | Theoretically Speaking

AI’s Models of the World, and Ours | Theoretically Speaking

Structural Results

Structural Results

Venkatesan Guruswami | Polylogues

Venkatesan Guruswami | Polylogues

54 -  Matrix representation of linear maps

54 - Matrix representation of linear maps

A Course on Generative AI - Diffusion Models

A Course on Generative AI - Diffusion Models

Cosmology, Lecture 16 - Inhomogeneities, Euler and Continuity Equations

Cosmology, Lecture 16 - Inhomogeneities, Euler and Continuity Equations

90 - The divergence theorem (Gauss)

90 - The divergence theorem (Gauss)

UUtah CS 6966 Interpretability of LLMs | Spring 2026

UUtah CS 6966 Interpretability of LLMs | Spring 2026

23/01/2026  спринт, классический стиль.  финалы.

23/01/2026 спринт, классический стиль. финалы.

21 - Vector spaces

21 - Vector spaces

06 - The Complex conjugate,  the modulus and division

06 - The Complex conjugate, the modulus and division

What is Computation -- Dr. Leslie Lamport, Microsoft

What is Computation -- Dr. Leslie Lamport, Microsoft

74 - The length of a curve

74 - The length of a curve

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]