ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

BitNet (1-bit Transformer) Explained in 3 Minutes!

Автор: Kavishka Abeywardana

Загружено: 2026-02-08

Просмотров: 66

Описание: Transformers have hit a wall.

As we scale to trillions of parameters, the bottleneck is no longer just "intelligence", it’s the massive energy, memory, and compute cost of traditional 16-bit floating-point math.

Enter BitNet.

In this video, we explore why 1-bit training (specifically BitNet 1.58b) is a fundamental shift in how we build AI. Instead of compressing models after they are trained, BitNet introduces "Quantization-Aware Training," allowing models to reach state-of-the-art performance using only ternary weights (-1, 0, 1).

🔍 What We Cover:
The Scaling Problem: Why FP16/FP32 is becoming a hardware nightmare.
Post-Training vs. Training-Aware: Why most compression tricks fail at low bit-widths.
The BitLinear Layer: How BitNet replaces expensive matrix multiplication with simple addition.
Stability Secrets: The role of Latent Weights and Straight-Through Estimators (STE).
Hardware Efficiency: Why this leads to massive energy savings and faster inference.

📄 Referenced Papers:
BitNet: Scaling 1-bit Transformers for Large Language Models
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits (BitNet 1.58b)

Enjoyed the breakdown? Subscribe for more deep dives into the architecture of the future.

#BitNet #machinelearning #AI #transformers #llms #quantization #1BitAI #deeplearning #artificialintelligence #BitNet158 #techexplained

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
BitNet (1-bit Transformer) Explained in 3 Minutes!

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

LSTM Explained Clearly: How It Solved the Long-Term Memory Problem

LSTM Explained Clearly: How It Solved the Long-Term Memory Problem

TransUNet Explained in 3 Minutes!

TransUNet Explained in 3 Minutes!

From SGD to Adagrad: How to Fix Exploding Gradients Forever

From SGD to Adagrad: How to Fix Exploding Gradients Forever

Diffusion Models Explained: The Engine Behind Stable Diffusion & Midjourney

Diffusion Models Explained: The Engine Behind Stable Diffusion & Midjourney

what are agents and multi agents in Gen AI?

what are agents and multi agents in Gen AI?

Synthesis part4

Synthesis part4

Adam Optimizer Explained: Why It’s Still the King of AI (10 Years Later)

Adam Optimizer Explained: Why It’s Still the King of AI (10 Years Later)

Something big is happening...

Something big is happening...

Doda - Pamiętnik (Official Video)

Doda - Pamiętnik (Official Video)

The AI Wake-Up Call Everyone Needs Right Now!

The AI Wake-Up Call Everyone Needs Right Now!

AI Fails at 96% of Jobs (New Study)

AI Fails at 96% of Jobs (New Study)

Focused Linear Attention Explained in 3 Minutes!

Focused Linear Attention Explained in 3 Minutes!

AI ruined bug bounties

AI ruined bug bounties

What does the GOLDEN PATH look like?

What does the GOLDEN PATH look like?

Cyber Security Start Karne Se Pehle Ye Video Dekho | Computer Fundamentals Explained

Cyber Security Start Karne Se Pehle Ye Video Dekho | Computer Fundamentals Explained

Linear Algebra for AI: Mastering Matrix Multiplication

Linear Algebra for AI: Mastering Matrix Multiplication

Advanced Features in Meshtastic: Private Channels & Sensors

Advanced Features in Meshtastic: Private Channels & Sensors

Hydra Attention Explained in 3 Minutes!

Hydra Attention Explained in 3 Minutes!

NEW FREE Stealth AI Model Just Dropped (Pony Alpha) INSANE 🤯

NEW FREE Stealth AI Model Just Dropped (Pony Alpha) INSANE 🤯

MedCLIP in 3 minutes!

MedCLIP in 3 minutes!

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]