ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Principal Component analysis (PCA) in R

Автор: Wakjira Tesfahun

Загружено: 2022-08-16

Просмотров: 27022

Описание: library("ggplot2")
library("gridExtra")
library(ggbiplot)
library("corrplot")
library(factoextra)
#conversion of row number
data=rownames(GGE)=c("Me","E6","E2","E4","KB","HUl","kat","Dan","EA2","Ts",
"E0","E5","DI","E8","E39","ET1","BO","Ab","Si")
pca =prcomp(GGE[,c(2:11)], center = TRUE,scale. = TRUE)
print(pca)
to get eigen value
eig.val = get_eigenvalue(pca)
eig.val
#to get scree plot
fviz_eig(pca, addlabels = TRUE, ylim = c(0, 50))
PCA results for variables
var=get_pca_var(pca)
to see the most contributing variables for each dimension
corrplot(var$cos2, is.corr=FALSE)
#to see the most contributing variables for both dimension
fviz_cos2(pca, choice = "var", axes = 1:2)
to draw a bar plot of variable contributions
Contributions of variables to PC1
a=fviz_contrib(pca, choice = "var", axes = 1)# top= 5 to limit to five var.
Contributions of variables to PC2
b=fviz_contrib(pca, choice = "var", axes = 2)
grid.arrange(a,b, ncol=2, top='Contribution of the variables to the first two PCs')
Total contribution on PC1 and PC2
fviz_contrib(pca, choice = "ind", axes = 1:2)
#Graph of variables
fviz_pca_var(pca,
col.var = "cos2",
gradient.cols = c("red", "blue", "green"),
repel = TRUE)
#Biplot of individuals and variables
fviz_pca_biplot(pca, repel = TRUE,
col.var = "blue",
col.ind = "red")
#########################################################################
#Plotting PCA
ggbiplot(pca)
#This will name each point with the name of the genotypes
ggbiplot(pca,labels=rownames(GGE))
plot using PC1 and PC2
ggbiplot(pca,ellipse=TRUE,choices=c(1,2),labels=rownames(GGE), groups=GGE$ENV)
scale the samples
ggbiplot(pca,ellipse=TRUE,obs.scale = 2, var.scale = 4.5,
labels=rownames(GGE), groups=GGE$ENV)
#remove the arrows altogether
ggbiplot(pca,ellipse=TRUE,obs.scale = 1, var.scale = 1,var.axes=FALSE,
labels=rownames(GGE), groups=GGE$ENV)
final biplot by Customize ggbiplot
aa=ggbiplot(pca,ellipse=TRUE,obs.scale = 1, var.scale = 1, labels=rownames(GGE), groups=GGE$ENV) +
scale_colour_manual(name="Location", values= c("blue", "red", "green","pink"))+
ggtitle("PCA of wakjira")+
theme_minimal()+
theme(legend.position = "bottom")
aa
ggsave(filename = "Waq.png", plot = aa,width = 22, height = 15, dpi = 2500, units = "cm")

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Principal Component analysis (PCA) in R

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Анализ главных компонентов (PCA)

Анализ главных компонентов (PCA)

Principal Component Analysis (PCA): With Practical Example in Minitab

Principal Component Analysis (PCA): With Practical Example in Minitab

StatQuest: Principal Component Analysis (PCA), Step-by-Step

StatQuest: Principal Component Analysis (PCA), Step-by-Step

Alpha lattice design  over location analysis on # R software

Alpha lattice design over location analysis on # R software

Data Visualization with R ggplot2 | Data Analytics | Community Webinar

Data Visualization with R ggplot2 | Data Analytics | Community Webinar

Master Principal Component Analysis (PCA) in R: Simplifying Complex Datasets

Master Principal Component Analysis (PCA) in R: Simplifying Complex Datasets

Principal Component Analysis (PCA) in R (presence-absence data)

Principal Component Analysis (PCA) in R (presence-absence data)

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Principal Component Analysis in R Programming | How to Apply PCA | Step-by-Step Tutorial & Example

Principal Component Analysis in R Programming | How to Apply PCA | Step-by-Step Tutorial & Example

R programming the basics: Rstudio and RGui interfaces (Part-3):  የፕሮግራሞቹ የፊት ገፅታ ይዘት ዝርዝር ገለፃ)

R programming the basics: Rstudio and RGui interfaces (Part-3): የፕሮግራሞቹ የፊት ገፅታ ይዘት ዝርዝር ገለፃ)

Explore your data using R programming

Explore your data using R programming

How to perform Principal component Analysis (PCA) on LIKERT SCALE ITEMS for QUESTIONNAIRE using SPSS

How to perform Principal component Analysis (PCA) on LIKERT SCALE ITEMS for QUESTIONNAIRE using SPSS

Principal components analysis in R

Principal components analysis in R

Robust Principal Component Analysis (RPCA)

Robust Principal Component Analysis (RPCA)

Understanding the Discrete Fourier Transform and the FFT

Understanding the Discrete Fourier Transform and the FFT

Как интерпретировать результаты анализа главных компонент (PCA) в R Studio | Анализ данных: объяс...

Как интерпретировать результаты анализа главных компонент (PCA) в R Studio | Анализ данных: объяс...

Principal Component Analysis and Factor Analysis in Stata

Principal Component Analysis and Factor Analysis in Stata

PCA using vegan and prcomp in R (Part 1) | Nutribiomes

PCA using vegan and prcomp in R (Part 1) | Nutribiomes

Data Analysis 6: Principal Component Analysis (PCA) - Computerphile

Data Analysis 6: Principal Component Analysis (PCA) - Computerphile

Principal Component Analysis (PCA) clearly explained (2015)

Principal Component Analysis (PCA) clearly explained (2015)

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]