ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Passive Learning of Active Causal Strategies in Agents and Language Models | Andrew Lampinen

Автор: ICARL

Загружено: 2023-06-27

Просмотров: 860

Описание: ICARL Seminar Series - 2023 Spring

Passive Learning of Active Causal Strategies in Agents and Language Models

Abstract:
What can be learned about causality and experimentation from passive data? This question is salient given recent successes of passively-trained language models in interactive domains such as tool use. Passive learning is inherently limited. However, we show that purely passive learning can in fact allow an agent to learn generalizable strategies for determining and using causal structures, as long as the agent can intervene at test time. In this talk, I will show empirically that agents trained via passive imitation on expert data can indeed generalize at test time to infer and use causal links which are never present in the training data; these agents can also generalize experimentation strategies to novel variable sets never observed in training. This is possible even in a more complex environment with high-dimensional observations, with the support of natural language explanations. Explanations can even allow passive learners to generalize out-of-distribution from perfectly-confounded training data. Finally, I'll show that language models, trained only on passive next-word prediction, can generalize causal intervention strategies from a few-shot prompt containing examples of experimentation, together with explanations and reasoning. These results highlight the surprising power of passive learning of active causal strategies, and may help to understand the behaviors and capabilities of language models. (https://arxiv.org/abs/2305.16183)

About our Speaker:
Andrew Lampinen is a Senior Research Scientist at Google DeepMind. Previously, he completed his PhD at Stanford University, and his BA at UC Berkeley. His work focuses on using methods from cognitive science to analyze AI, and using insights from cognitive science to improve AI, and covers areas ranging from RL agents to language models. He is particularly interested in cognitive flexibility and generalization, and how these abilities are enabled by factors like language, memory, and embodiment.

——————————————————
Follow our Speaker:
Twitter: twitter.com/AndrewLampinen
Website: lampinen.github.io
Github: github.com/lampinen/


ICARL
Site: icarl.doc.ic.ac.uk
Twitter: twitter.com/ic_arl
YouTube:    / icarlseminars  
——————————————————

Intro and Outro music courtesy of Bensound.com - Funky Suspense by Benjamin Tissot

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Passive Learning of Active Causal Strategies in Agents and Language Models | Andrew Lampinen

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

A Comparative Cognition Approach to AI Evaluation | Lucy Cheke

A Comparative Cognition Approach to AI Evaluation | Lucy Cheke

#83 Dr. ANDREW LAMPINEN (Deepmind) - Natural Language, Symbols and Grounding [NEURIPS2022 UNPLUGGED]

#83 Dr. ANDREW LAMPINEN (Deepmind) - Natural Language, Symbols and Grounding [NEURIPS2022 UNPLUGGED]

Dynamic Deep Learning | Richard Sutton

Dynamic Deep Learning | Richard Sutton

Почему у вас акцент в иностранном языке

Почему у вас акцент в иностранном языке

Люди От 1 До 100 Лет Участвуют В Гонке За $250,000!

Люди От 1 До 100 Лет Участвуют В Гонке За $250,000!

DeepMind Scientist: Causal AI & Intelligence | Andrew Lampinen Ep 13 | CausalBanditsPodcast.com

DeepMind Scientist: Causal AI & Intelligence | Andrew Lampinen Ep 13 | CausalBanditsPodcast.com

WIELKA WYPRAWA MARII WIERNIKOWSKIEJ W GŁĄB ROSJI #1

WIELKA WYPRAWA MARII WIERNIKOWSKIEJ W GŁĄB ROSJI #1

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

Понимание инженерных чертежей

Понимание инженерных чертежей

Understanding and Improving Model-Based Deep Reinforcement Learning | Jessica Hamrick

Understanding and Improving Model-Based Deep Reinforcement Learning | Jessica Hamrick

Что такое генеративный ИИ и как он работает? – Лекции Тьюринга с Миреллой Лапатой

Что такое генеративный ИИ и как он работает? – Лекции Тьюринга с Миреллой Лапатой

Paweł Jeżowski - Punkt krytyczny dla Putina? Rosyjski eksport ropy gwałtownie spada. Nowe sankcje.

Paweł Jeżowski - Punkt krytyczny dla Putina? Rosyjski eksport ropy gwałtownie spada. Nowe sankcje.

Resurrecting Recurrent Neural Networks for Long Sequences | Razvan Pascanu

Resurrecting Recurrent Neural Networks for Long Sequences | Razvan Pascanu

Jiaqi Zhang (MIT): Active Learning for Optimal Intervention Design in Causal Models

Jiaqi Zhang (MIT): Active Learning for Optimal Intervention Design in Causal Models

Exploring Alternative Bio-Inspired Neural Building Blocks for Fast RL | Sebastian Risi

Exploring Alternative Bio-Inspired Neural Building Blocks for Fast RL | Sebastian Risi

Understanding Incremental Unsupervised Exploration for Goal-based RL | Alessandro Lazaric

Understanding Incremental Unsupervised Exploration for Goal-based RL | Alessandro Lazaric

У тебя меньше 1700? Учу тебя ПОНИМАТЬ шахматы и КАЙФОВАТЬ от игры! Играем ваши дебюты и гамбиты

У тебя меньше 1700? Учу тебя ПОНИМАТЬ шахматы и КАЙФОВАТЬ от игры! Играем ваши дебюты и гамбиты

ИИ и цифровая безопасность

ИИ и цифровая безопасность

Объяснение Transformers: понимание модели, лежащей в основе GPT, BERT и T5

Объяснение Transformers: понимание модели, лежащей в основе GPT, BERT и T5

Real-world Reinforcement Learning in Multi-Agent Systems | Eugene Vinitsky

Real-world Reinforcement Learning in Multi-Agent Systems | Eugene Vinitsky

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]