Sufficient Statistic for Shape Parameter in Gamma Distribution | UPSC ISS 2024 Paper-2 | Problem-23
Автор: RitwikMath
Загружено: 2025-10-22
Просмотров: 58
Описание:
This video explains how to find a sufficient statistic for the shape parameter \(\theta\) of a Gamma distribution with PDF:
\[
f(x; \theta) = \frac{1}{\Gamma(\theta) \mu^\theta} x^{\theta - 1} e^{-x/\mu}, \quad x 0,
\]
where \(\mu\) is known. By analyzing the likelihood function of a sample \(X_1, X_2, \ldots, X_n\), it shows that the likelihood depends on the data only through the product
\[
T = \prod_{i=1}^n X_i.
\]
Thus, by the factorization theorem, \(T\) is a sufficient statistic for \(\theta\). This illustrates sufficient statistics identification in exponential family distributions, fundamental in statistical inference and relevant for UPSC preparations.
#upsc #upscmotivation #upscaspirants #upscpreparation #civilservices #civilservicesexam #upscexam #upscstudy #upscstudents #ias #ips #ifs #studywithme #statisticsexplained #hypothesistesting #statistics #learningmadeasy #education #ytshorts #maths #conceptclarity #indianstatisticalservice #statisticalmethods #ritwikmath #probability #statisticsoptional #gamma_distribution #sufficient_statistic #factorization_theorem
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: