Double Summation Demystified | Binomial Theorem
Автор: Factorial Academy
Загружено: 2025-08-17
Просмотров: 969
Описание:
Double Summation Demystified | Binomial Theorem | Factorial’s Question of the Day | JEE
In this video, we discuss a wonderful question from the Binomial Theorem which requires a clear understanding of double summation. Problems like these push you to connect different ideas of algebra and combinatorics, making it a gem of a question.
⸻
Question Discussed:
Q. Evaluate the following expression:
Sum over 0 ≤ i ≤ j ≤ n of (i + j) * (C_i^2 + C_j^2 + C_i * C_j)
Options:
(A) (n/2) * { (2n – 1) * 2^n C_n + 4^n }
(B) (n/2) * { (2n + 1) * 2^n C_n + 4^n }
(C) (n/2) * { 4^n – (2n – 1) * 2^n C_n }
(D) (n/2) * { 4^n – (2n + 1) * 2^n C_n }
⸻
🔔 Don’t forget to subscribe for more beautiful math problems!
📢 Join our Telegram for updates and discussions:
https://t.me/academyfactorial
#BinomialTheorem #JEEAdvanced #JEE2025 #IITJEE #IntegralCalculus #MathsForJEE #FactorialAcademy #BinomialExpansion #DoubleSummation #MathConcepts #JEEPreparation #JEETricks #IITJEE2025 #MathShorts #ProblemSolving
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: