Expectation Maximization (EM) - 1 - Theory
Автор: Meerkat Statistics
Загружено: 2021-08-23
Просмотров: 1207
Описание:
Become a member!
https://meerkatstatistics.com/courses/
🎉 Special YouTube 60% Discount on Yearly Plan – valid for the 1st 100 subscribers; Voucher code: First100 🎉 *
Why become a member?
All video content
Extra material on complete-courses (notebooks)
Access to code and notes
Community Discussion
No Ads
Support the Creator ❤️
If you’re looking for statistical consultation, work on interesting projects, or training workshop, visit my website https://meerkatstatistics.com/ or contact me directly at [email protected]
~~~~~ SUPPORT ~~~~~
Paypal me: https://paypal.me/MeerkatStatistics
~~~~~~~~~~~~~~~~~
The EM algorithm is used to estimate model parameters when there are missing data, or latent variables. It overcomes the problem by using an iterative method to maximize the complete-likelihood (e.g., the likelihood of both the observed and unobserved data).
In this video I show the theory behind the algorithm.
Part 2: • Expectation Maximization (EM) - 2 - Exampl...
~~~~~ SUPPORT ~~~~~
Paypal me: https://paypal.me/MeerkatStatistics
~~~~~~~~~~~~~~~~~
Intro/Outro Music: Dreamer - by Johny Grimes
• Johny Grimes - Dreamer
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: