ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Detecting Network Effects: Randomizing Over Randomized Experiments

Автор: KDD2017 video

Загружено: 2017-06-28

Просмотров: 3987

Описание: Detecting Network Effects: Randomizing Over Randomized Experiments

Martin Saveski (MIT)
Jean Pouget-Abadie (Harvard University)
Guillaume Saint-Jacques (MIT)
Weitao Duan (LinkedIn)
Souvik Ghosh (LinkedIn)
Ya Xu (LinkedIn)
Edo Airoldi (Harvard University)

Randomized experiments—A/B tests—are the standard approach for evaluating the effect of new product features. They rely on the “stable treatment value assumption” (SUTVA) which states that treatment only affects treated users and does not spill over to their friends. Violations of SUTVA, common in features that exhibit network effects, result in inaccurate estimates of the treatment effect. In this paper, we leverage a new experimental design for testing whether SUTVA holds, without making any assumptions on how treatment effects may spill over between the treatment and the control group. We do so by simultaneously running completely randomized and cluster-based randomized experiments and comparing the difference of resulting estimates, detailing known theoretical bounds on the Type I error rate. We provide practical guidelines for implementing this design on large-scale experimentation platforms. Finally, we deploy this design to LinkedIn’s experimentation platform and apply it to two online experiments, highlighting the presence of network effects and bias in standard A/B testing approaches in a “real-world” setting.

More on http://www.kdd.org/kdd2017/

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Detecting Network Effects: Randomizing Over Randomized Experiments

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

🧘💤 Зе-медитации на РЕПАРАЦИИ и КУБИК РУБИКА тёрок в Майями. Одесса В ХЛАМ! Гости Эпштейна - Демура

🧘💤 Зе-медитации на РЕПАРАЦИИ и КУБИК РУБИКА тёрок в Майями. Одесса В ХЛАМ! Гости Эпштейна - Демура

Johan Ugander, Experiments with Network Effects

Johan Ugander, Experiments with Network Effects

What Do You Measure In AB Testing? HEART and AARRRg Frameworks

What Do You Measure In AB Testing? HEART and AARRRg Frameworks

The Neuroscience of Magic - with Gustav Kuhn

The Neuroscience of Magic - with Gustav Kuhn

There Is Something Faster Than Light

There Is Something Faster Than Light

A/B Testing in Data Science Interviews by a Google Data Scientist | DataInterview

A/B Testing in Data Science Interviews by a Google Data Scientist | DataInterview

Introduction to Cluster Randomized Trials: PHRI statistical coordinator Shun Fu Lee, Mar 10, 2020

Introduction to Cluster Randomized Trials: PHRI statistical coordinator Shun Fu Lee, Mar 10, 2020

Data, network effects, and competitive advantage | Andrei Hagiu

Data, network effects, and competitive advantage | Andrei Hagiu

FDR, q-значения против p-значений: множественное тестирование объяснено просто!

FDR, q-значения против p-значений: множественное тестирование объяснено просто!

The Problem of Multiple Comparisons | NEJM Evidence

The Problem of Multiple Comparisons | NEJM Evidence

Machine Learning and Causal Inference for Advertising Effectiveness

Machine Learning and Causal Inference for Advertising Effectiveness

Experimentation and Interference in a Two-Sided Marketplace

Experimentation and Interference in a Two-Sided Marketplace

AB Testing 101 | Fmr. Google Data Scientist Explains How to Calculate the Sample Size

AB Testing 101 | Fmr. Google Data Scientist Explains How to Calculate the Sample Size

Решайте задачи A/B-тестирования для собеседований по науке о данных | Интервью по продукту

Решайте задачи A/B-тестирования для собеседований по науке о данных | Интервью по продукту

Experiment Rigor for the Design and Analysis of Switchback Experiments

Experiment Rigor for the Design and Analysis of Switchback Experiments

Ya Xu: Causal Inference Challenges in Industry: A perspective from experiences at LinkedIn

Ya Xu: Causal Inference Challenges in Industry: A perspective from experiences at LinkedIn

Ronny Kohavi: A/B Testing Pitfalls: Getting Numbers You Can Trust is Hard - CXL LIVE 2016

Ronny Kohavi: A/B Testing Pitfalls: Getting Numbers You Can Trust is Hard - CXL LIVE 2016

Introduction to power in significance tests | AP Statistics | Khan Academy

Introduction to power in significance tests | AP Statistics | Khan Academy

A/B Testing Made Easy: Real-Life Example and Step-by-Step Walkthrough for Data Scientists!

A/B Testing Made Easy: Real-Life Example and Step-by-Step Walkthrough for Data Scientists!

Deep & Cross Network for Ad Click Predictions

Deep & Cross Network for Ad Click Predictions

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]