ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Faculty Talk: “What do things look like?” or “Making advanced mathematics seem simpler.”

Автор: Stony Brook University Math Club

Загружено: 2024-03-16

Просмотров: 4963

Описание: Speaker: Prof. Dennis Sullivan
Date: October 12th, 2023
Abstract: I.) Besides Euclidean geometry in every dimension, there is also in every dimension the unique unbounded totally symmetrical geometry called hyperbolic geometry.
II.) How is the free abelian group on k generators different from the free group on k generators? What does each one look like? What does any infinite group look like? This, given that it has a finite set of generators. The idea of the answer is due to Gromov.
III.) What are closed Riemann surfaces, what are their universal covers, and what do they look like? This uses the Gromov idea of rough or quasi geometry.
IV.) What does our three-dimensional space look like? What does any abstract three-dimensional space look like? Eight building blocks of an answer are due to Thurston strongly using Gromov’s idea in (II) and the pictures in (III).

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Faculty Talk: “What do things look like?” or “Making advanced mathematics seem simpler.”

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Topology through the Centuries: Low Dimensional Manifolds - John Milnor

Topology through the Centuries: Low Dimensional Manifolds - John Milnor

Strange Pattern in symmetries - Bott periodicity

Strange Pattern in symmetries - Bott periodicity

Шокирующая связь между комплексными числами и геометрией.

Шокирующая связь между комплексными числами и геометрией.

1. History of Algebraic Topology; Homotopy Equivalence - Pierre Albin

1. History of Algebraic Topology; Homotopy Equivalence - Pierre Albin

Pavlo Gavrylenko – Advanced Mathematical Physics A. 23. Bessel functions

Pavlo Gavrylenko – Advanced Mathematical Physics A. 23. Bessel functions

Why there are no 3D complex numbers

Why there are no 3D complex numbers

1.1 M. Gromov : Geometry as the art of asking questions

1.1 M. Gromov : Geometry as the art of asking questions

Terence Tao at IMO 2024: AI and Mathematics

Terence Tao at IMO 2024: AI and Mathematics

The two points that lie on every circle (???)  #SoME3

The two points that lie on every circle (???) #SoME3

“An Antiphilosophy of Mathematics,” Peter J. Freyd

“An Antiphilosophy of Mathematics,” Peter J. Freyd

Riemannian manifolds, kernels and learning

Riemannian manifolds, kernels and learning

James Simons - Origin of Chern-Simons

James Simons - Origin of Chern-Simons

Why It Was Almost Impossible To Make Transistors Less Than 10 nm

Why It Was Almost Impossible To Make Transistors Less Than 10 nm

Оружие математика | Теория категорий и почему нам это не всё равно 1.0

Оружие математика | Теория категорий и почему нам это не всё равно 1.0

Gauge Theory, Geometric Langlands, and All That - Edward Witten

Gauge Theory, Geometric Langlands, and All That - Edward Witten

Ravi Vakil: Algebraic geometry and the ongoing unification of mathematics

Ravi Vakil: Algebraic geometry and the ongoing unification of mathematics

The Concept So Much of Modern Math is Built On | Compactness

The Concept So Much of Modern Math is Built On | Compactness

Неравенство Белла: самая странная теорема в мире | Нобелевская премия 2022 года

Неравенство Белла: самая странная теорема в мире | Нобелевская премия 2022 года

Новый взгляд на ленты Мёбиуса — Numberphile

Новый взгляд на ленты Мёбиуса — Numberphile

The Two Types of Mathematics

The Two Types of Mathematics

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]