ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Running loops in parallel in R using foreach

parallelization

for loop

foreach

efficient r programming

speeding up R code

regression analysis

running R code in parallel

parallel

doParallel

clusterApply

benchmark

bench

rstats

Автор: StatistikinDD

Загружено: 2020-12-20

Просмотров: 4824

Описание: Loops have a bad reputation in R for being slow. In many cases, loops can be avoided using vectorized functions or apply functions like lapply or the map family of functions from the purrr package.

However, if you encounter R code that runs too slowly because of loops and you find it hard to rewrite the code to avoid loops, a quicker, yet powerful approach may be to make the loops run in parallel. We can do that using the foreach package by Michelle Wallig and Steve Weston.

We compare Base R's for loops to the foreach approach. A strength of the latter is that it automatically creates a return object (default: a list), which is not the case in Base R. (It's possible to customize that, which I don't do in the video.) Benchmarking shows a great speed improvement for parallelized loops compared to loops running sequentially. However, the clusterApply() approach is still a bit faster in our use case, which runs 200 regression models and returns model summaries.

Check out foreach's documentation: It contains well-written vignettes - see help(package = "foreach"). A powerful concept I don't mention in the video is iterators, which allow you to efficiently manage what is sent to the workers in each iteration, to minimize data transfer overhead.

Note that not all loops are suited for running in parallel: especially if each iteration depends on results of previous iterations, as may be the case in simulations. Here, we assume that each iteration runs independently of other iterations.

Code can be found here:
https://github.com/fjodor/paralleliza...

Here's the video that explains parallel::clusterApply() in more detail:
   • Running R code in parallel using parallel:...  

Thumbnail image: Chait Goli from Pexels

Contact me, e. g. to discuss (online) R workshops / trainings / webinars:

LinkedIn:   / wolfriepl  
Twitter:   / statistikindd  
Xing: https://www.xing.com/profile/Wolf_Riepl
Facebook:   / statistikdresden  

https://statistik-dresden.de/kontakt
R Workshops: https://statistik-dresden.de/r-schulu...
Blog (German, translate option): https://statistik-dresden.de/statisti...

Playlist: Music chart history
   • Music Chart History  

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Running loops in parallel in R using foreach

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

How to detect Spurious Correlations in R using Linear Models

How to detect Spurious Correlations in R using Linear Models

Running R code in parallel using parallel::clusterApply()

Running R code in parallel using parallel::clusterApply()

Loops using R programming

Loops using R programming

Efficient Loopsing in R | Rstudio FOR Loop Tutorial

Efficient Loopsing in R | Rstudio FOR Loop Tutorial

Henrik Bengtsson - Future - Simple, Friendly Parallel Processing for R [Remote]

Henrik Bengtsson - Future - Simple, Friendly Parallel Processing for R [Remote]

Bryan Lewis | Parallel computing with R using foreach, future, and other packages | RStudio (2020)

Bryan Lewis | Parallel computing with R using foreach, future, and other packages | RStudio (2020)

How to run your R code in parallel with the furrr package (CC127)

How to run your R code in parallel with the furrr package (CC127)

Паттерн, который должен знать каждый

Паттерн, который должен знать каждый

For Loops in R

For Loops in R

Make your Analysis 4x faster | Multi core processing with R

Make your Analysis 4x faster | Multi core processing with R

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]