ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Yuri Manin | Homotopy spectra and Diophantine equations

Автор: Harvard CMSA

Загружено: 2020-11-30

Просмотров: 1706

Описание: 11/20/2020 Math Science Literature Lecture

Speaker: Yuri Manin (Max Planck Institute for Mathematics)

Title: Homotopy spectra and Diophantine equations

Abstract: For a long stretch of time in the history of mathematics, Number Theory and Topology formed vast, but disjoint domains of mathematical knowledge.

Origins of number theory can be traced back to the Babylonian clay tablet Plimpton 322 (about 1800 BC) that contained a list of integer solutions of the "Diophantine'' equation $a^2+b^2=c^2$: archetypal theme of number theory, named after Diophantus of Alexandria (about 250 BC).

Topology was born much later, but arguably, its cousin -- modern measure theory, -- goes back to Archimedes, author of Psammites ("Sand Reckoner"), who was approximately a contemporary of Diophantus.

In modern language, Archimedes measures the volume of observable universe by counting the number of small grains of sand necessary to fill this volume. Of course, many qualitative geometric models and quantitative estimates of the relevant distances precede his calculations. Moreover, since the estimated numbers of grains of sands are quite large (about $10^{64}$), Archimedes had to invent and describe a system of notation for large numbers going far outside the possibilities of any of the standard ancient systems.

The construction of the first bridge between number theory and topology was accomplished only about fifty years ago: it is the theory of spectra in stable homotopy theory.

In particular, it connects $Z$, the initial object in the theory of commutative rings, with the sphere spectrum $S$.

This connection poses the challenge: discover a new information in number theory using the developed independently machinery of homotopy theory.

In this this talk based upon the authors' (Yu. Manin and M. Marcolli) joint research project, I suggest to apply homotopy spectra to the problem of distribution of rational points upon algebraic manifolds

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Yuri Manin | Homotopy spectra and Diophantine equations

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Yuri Manin - Science Lives interview

Yuri Manin - Science Lives interview

Constructive Mathematics: Linear Diophantine equations & the extended Euclidean algorithm (1st Yr)

Constructive Mathematics: Linear Diophantine equations & the extended Euclidean algorithm (1st Yr)

Don Zagier | Quantum topology and new types of modularity

Don Zagier | Quantum topology and new types of modularity

Yuri Manin - Numbers as functions

Yuri Manin - Numbers as functions

manin 10092012

manin 10092012

Dennis Gaitsgory | From geometric to classical Langlands

Dennis Gaitsgory | From geometric to classical Langlands

Президент выводит войска? / Спецборт срочно вылетел в Москву

Президент выводит войска? / Спецборт срочно вылетел в Москву

Мадху Судан | Проблема P и NP: экзистенциальный вопрос математики

Мадху Судан | Проблема P и NP: экзистенциальный вопрос математики

CMSA Bott Lectures

CMSA Bott Lectures

Science Lives: Yuri Manin, On Cubic Forms

Science Lives: Yuri Manin, On Cubic Forms

Manin à Paris /1989

Manin à Paris /1989

Smooth Jazz & Soul R&B 24/7 – Soul Flow Instrumentals

Smooth Jazz & Soul R&B 24/7 – Soul Flow Instrumentals

28ème Journées Arithmétiques 2013

28ème Journées Arithmétiques 2013

Arithmetic hyperbolic 3-manifolds, perfectoid spaces, and Galois representations I - Peter Scholze

Arithmetic hyperbolic 3-manifolds, perfectoid spaces, and Galois representations I - Peter Scholze

Yuri Manin - Time Between Real and Imaginary: Big Bang and Modular Curves

Yuri Manin - Time Between Real and Imaginary: Big Bang and Modular Curves

The Hardest Math Class in the World?!?!

The Hardest Math Class in the World?!?!

Речь Трампа в Давосе I Комментирует Федор Крашенинников

Речь Трампа в Давосе I Комментирует Федор Крашенинников

Peter Scholze - Locally symmetric spaces, and Galois representations (1)

Peter Scholze - Locally symmetric spaces, and Galois representations (1)

Zhigang Yao | Interaction of Statistics and Geometry: A New Landscape for Data Science

Zhigang Yao | Interaction of Statistics and Geometry: A New Landscape for Data Science

Что с экономикой РФ? ФНБ на исходе, доходы рухнули, бизнес закрывается

Что с экономикой РФ? ФНБ на исходе, доходы рухнули, бизнес закрывается

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]