ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Complex Event Processing: A Paradigm for Fast Data Management by Dr. Qunzhi Zhou (USC)

Complex Event Processing

cep

analytics

big data

stream processing

distributed computing

USC Viterbi School Of Engineering (College/University)

Viktor Prasanna

Qunzhi Zhou

Software (Industry)

Автор: Milibo

Загружено: 2015-03-01

Просмотров: 1401

Описание: Emerging applications in domains like Smart Grid, e-commerce and financial services have been motivating Fast Data which emphasizes the Velocity aspect of Big Data. Existing Big Data management systems mostly focus on the Volume aspect of Big Data, with specialized techniques like Hadoop and NoSQL databases to support scalable and reliable storage of very large data set. These systems provide programming and query primitives, and high cumulative I/O read performances to facilitate large-scale computation over persistent or slow-changing data on durable storage.

Complex Event Processing (CEP), on the other hand, is a promising paradigm to manage Fast Data. CEP is recognized for online analytics of data that arrive continuously from ubiquitous, always-on sensors and digital data streams. It allows query patterns composed with correlation constraints, also called complex events, to be detected on-the-fly for situation awareness. CEP has grown popular for operational intelligence where online pattern detection drives realtime response.

Fast Data management motivates certain distinctive capabilities from CEP systems to deal with concurrent data Variety, Volume and Velocity. We present a Complex Event Processing framework that considers all the 3-V dimensions of Fast Data. Specifically, we discuss (1) Semantic Complex Event Processing for high-level query specification in diverse information spaces, hiding data Variety; (2) Resilient Complex Event Processing across the boundary of high-Velocity data streams and persistent data store; (3) Stateful Complex Event Processing for hybrid online and on-demand queries over transient data Volumes on streams.

Qunzhi Zhou is a software engineer at Apple Inc. He received his Ph.D. in Computer Science from University of Southern California. His research interests are in the areas of linked data, scalable data management for eEngineering and distributed computing systems. His articles have appeared in conferences including International Semantic Web Conference (ISWC) and IEEE Big Data Conference (IEEE BigData). He is the first place co-winner in IEEE International Scalable Computing Challenge (SCALE), 2012.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Complex Event Processing: A Paradigm for Fast Data Management by Dr. Qunzhi Zhou (USC)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]