ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

How to Use first() with Null Values in PySpark DataFrames

How to use first() with a function where column has null values and group it by another column in py

dataframe

pyspark

group by

Автор: vlogize

Загружено: 2025-03-26

Просмотров: 0

Описание: Learn how to effectively calculate the first non-null value in a column grouped by another column in PySpark, even when dealing with nulls.
---
This video is based on the question https://stackoverflow.com/q/71218571/ asked by the user 'Stend_IR' ( https://stackoverflow.com/u/18276297/ ) and on the answer https://stackoverflow.com/a/71220054/ provided by the user 'Til Piffl' ( https://stackoverflow.com/u/5118843/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to use first() with a function where column has null values and group it by another column in pyspark?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Use first() with Null Values in PySpark DataFrames

When working with DataFrames in PySpark, it's common to encounter issues while dealing with null values, especially when you need to calculate values based on grouping. One such scenario is when you want to find the first non-null value in a specific column and create a new column based on that value, grouping by another column. This post will guide you through the process step-by-step.

The Problem

Let's say you have a DataFrame with columns Date, A, and B, where column A contains some null values along with numerical entries. The goal is to calculate the first possible value in column A (which is not null) for each date and convert it to a character, adding the result to a new column C.

For a practical example, if chr(97) gives you the letter "a", this means when the first number in column A under a particular date is 97, column C should reflect "a".

Expected Output

Your final DataFrame would look something like this:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To achieve this result, you can use the first() function in combination with the Window function in PySpark. Below is a step-by-step breakdown of how to implement this.

Step 1: Import Necessary Libraries

First, ensure you import the necessary libraries from PySpark:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Create a Window Specification

You need to create a window specification that partitions your DataFrame by Date and orders it by A. This will ensure that you can calculate the first non-null value correctly.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Adding the New Column

Now, you can use the following code snippet to calculate the first non-null value in column A and convert it to the corresponding character. The 'C' column will be populated accordingly.

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

withColumn('C', F.first('A', ignorenulls=True).over(window_spec)): This line creates a new column C that contains the first non-null value found in column A, grouped by Date.

withColumn('C', F.chr('C')): This line converts the numerical ASCII value in column C to the corresponding character.

Conclusion

Using the first() function alongside Window specifications allows you to effectively handle null values in PySpark DataFrames. By following the steps outlined above, you can group your data and derive meaningful insights while addressing potential null entries in your dataset.

This approach is especially valuable in data preprocessing for analytics or machine learning tasks where clean data is essential.

Feel free to test the code in your own PySpark environment and watch your DataFrames transform!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
How to Use first() with Null Values in PySpark DataFrames

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]