ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Land use and Land cover classification using Machine learning: CART , SVM, Random forest classifier

Автор: Study Hacks-Institute of GIS & Remote Sensing

Загружено: 2023-08-26

Просмотров: 3489

Описание: Registration is open for a new batch of 7 days of Complete Google Earth Engine for Remote Sensing & GIS Analysis online training for Beginners to Advanced levels.
These classes will teach you all the necessary things to start using GEE for your remote sensing analysis. We mainly focus on these people who don't know any programming language and Earth Engine function. We cover LULC mapping, Air quality, Monitoring, Time series analysis, Calculating any Indices, Supervised Classification, Machine Learning Methods, and more.

Class Start: 8th September 2023
Admission Last Date: 5th September 2023 ( 1st 10 registered people get 50% discount)
Total Class: 7 days (Friday and Saturday in Week)
Class Duration: 3 hours (Each day), Time: 9:00 P.M to 12:00 A.M (GMT +6)

For registration contact this WhatsApp number: +8801780942798 or Email: [email protected]

Course Content:
1. GEE: Introduction
2. JavaScript programming language A to Z
3. GEE Server language A to Z
4. Filtering and Displaying Rater & Vector data
5. Importing Raster and Vector Data in GEE
6. Calculating with Images: Raster Calculations
7. Calculating NDVI, NDWI, EVI , & all indices.
8. Introduction to Image Classification in GEE
9. Landover & Land use classification Map using Machine learning
10. Crop land classification using Machine Learning
11. Exporting Raster and Vector Data from GEE
12. How to make research paper map using GEE & ArcMap software.
13.How to make a time-series chart for NDVI, NDWI, and other Indices?
14. Spectral indices and develop the skills for calculating any index (NDVI, NDWI, NDSI, MNDWI, MSAVI)
15. How to remove CLOUD Mask from satellite Images
16. How to monitor surface water rainy and Dry time periods
17. Visualization (DEM) of Hill shade , Aspect and Slope Map
18. How to make an NDVI chart over a period of time of a Agricultural Land
19. Air Quality Monitoring: atmospheric concentrations of ozone, methane, formaldehyde,
aerosol, carbon monoxide, nitrogen oxide, and sulfur dioxide
20. How to Download Air Quality parameters Time series data in CSV format using GEE
21. How to make LULC accuracy assessment using Google Earth Engine. (Kappa, Producers & Consumers accuracy)
22. Monitoring Land Surface temperature using Landsat and MODIS || Make Time series chart of LST
23. How to Calculate Average, Maximum & Minimum pixel values using GEE
24. How to calculate the Classified Area using GEE
25. How to make a single class Map such as Urban maps, Water body maps,s, etc.
26. How to ADD A LEGEND, Title in GEE

Online Training Benefits:
Course Certificate (After submitting all Assignments)
Materials (Slide, PDF)
Practice Code (All codes provide)
Recorded Class (All class recorded video provided)
Lifetime teaching support

Join Our Community:
Join the Telegram group: https://t.me/gisandremotesenginglearn...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Land use and Land cover classification using Machine learning: CART , SVM, Random forest classifier

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Crop Type Classification with Machine Learning & Ground Truth Data | Google Earth Engine Tutorial

Crop Type Classification with Machine Learning & Ground Truth Data | Google Earth Engine Tutorial

Supervised Classification for Land Cover Mapping with Landsat 8 in Google Earth Engine

Supervised Classification for Land Cover Mapping with Landsat 8 in Google Earth Engine

Lec-03 : DBMS Architecture | English Tutorial

Lec-03 : DBMS Architecture | English Tutorial

Land Use Land Cover Classification using Machine Learning || Google Earth Engine for LULC mapping

Land Use Land Cover Classification using Machine Learning || Google Earth Engine for LULC mapping

Estimating Soil loss in Google Earth Engine || Soil loss mapping

Estimating Soil loss in Google Earth Engine || Soil loss mapping

Identifying Minerals with Hyperspectral Analysis-Part 1

Identifying Minerals with Hyperspectral Analysis-Part 1

Image Classification Through Support Vector Machine (SVM) in ArcGIS| LULC Mapping In ArcGIS

Image Classification Through Support Vector Machine (SVM) in ArcGIS| LULC Mapping In ArcGIS

Random Forest Machine Learning Classification to Map Land Cover with Landsat 9

Random Forest Machine Learning Classification to Map Land Cover with Landsat 9

Киберколониализм, или Почему чем яростнее беспредел, тем ближе стабилизация | Андрей Масалович

Киберколониализм, или Почему чем яростнее беспредел, тем ближе стабилизация | Андрей Масалович

Контролируемая классификация с использованием спутниковых снимков Sentinel 2 | Earth Engine | Маш...

Контролируемая классификация с использованием спутниковых снимков Sentinel 2 | Earth Engine | Маш...

The World's Most Important Machine

The World's Most Important Machine

Этот ракетный двигатель не был разработан людьми.

Этот ракетный двигатель не был разработан людьми.

Land Use Land Cover Mapping in Google Earth Engine in 2025 | GeoDev

Land Use Land Cover Mapping in Google Earth Engine in 2025 | GeoDev

Urban Sprawl Mapping: How to prepare Urban Expansion Mapping using Google Earth Engine

Urban Sprawl Mapping: How to prepare Urban Expansion Mapping using Google Earth Engine

Land Cover Classification using a Simple Deep Learning Model (TensorFlow) with Earth Engine Data

Land Cover Classification using a Simple Deep Learning Model (TensorFlow) with Earth Engine Data

Я УДАЛИЛ Claude Code – Вот, что я использую сейчаc

Я УДАЛИЛ Claude Code – Вот, что я использую сейчаc

GEE Tutorial #32 -  Machine Learning with Earth Engine - Supervised Classification

GEE Tutorial #32 - Machine Learning with Earth Engine - Supervised Classification

Coral Reef Mapping and Monitoring Using Remote Sensing with Machine Learning

Coral Reef Mapping and Monitoring Using Remote Sensing with Machine Learning

Geo for Good 2022: Intro to Machine Learning and Earth Engine

Geo for Good 2022: Intro to Machine Learning and Earth Engine

Как сделать водяной насос БЕЗ ЭЛЕКТРИЧЕСТВА 🚱⚡ из ПВХ-труб

Как сделать водяной насос БЕЗ ЭЛЕКТРИЧЕСТВА 🚱⚡ из ПВХ-труб

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]