t-SNE Tutorial for Beginners High-Dimensional Data Visualization in Machine Learning
Автор: DataCode With Sharad
Загружено: 2025-11-18
Просмотров: 16
Описание:
#tSNE #MachineLearning #DimensionalityReduction #DataScience #Visualization #DeepLearning #Python #ScikitLearn #HighDimensionalDataIn
this video, we will understand t-Distributed Stochastic Neighbor Embedding (t-SNE) — one of the most powerful techniques for visualizing high-dimensional data in Machine Learning.
You will learn:
What is t-SNE?
Why do we use it in ML & Data Science?
How does t-SNE work (intuitive explanation)?
Example with real dataset
Python implementation using Scikit-Learn
Tips to avoid common t-SNE mistakes
Whether you are a Data Scientist, ML beginner, or researcher, this video will help you understand t-SNE clearly with simple explanations and visuals.
🧠 What is t-SNE?
t-SNE (t-Distributed Stochastic Neighbor Embedding) is a non-linear dimensionality reduction technique used to visualize high-dimensional datasets in 2D or 3D. It preserves local structure, making it ideal for clusters like images, text embeddings, or sensor data.
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: